Culture of the seaweed Ulva ohnoi integrated in a Solea senegalensis recirculating system: influence of light and biomass stocking density on macroalgae productivity

[1]  M. T. Dinis,et al.  New developments and biological insights into the farming of Solea senegalensis reinforcing its aquaculture potential , 2016 .

[2]  M. Magnusson,et al.  The intensive land-based production of the green seaweeds Derbesia tenuissima and Ulva ohnoi: biomass and bioproducts , 2016, Journal of Applied Phycology.

[3]  C. Macleod,et al.  Modeling macroalgae growth and nutrient dynamics for integrated multi-trophic aquaculture , 2015, Journal of Applied Phycology.

[4]  D. Schiel,et al.  A dynamic growth model of macroalgae: Application in an estuary recovering from treated wastewater and earthquake-driven eutrophication , 2014 .

[5]  D. Zou The effects of severe carbon limitation on the green seaweed, Ulva conglobata (Chlorophyta) , 2014, Journal of Applied Phycology.

[6]  R. Nys,et al.  Variation in amino acid content and its relationship to nitrogen content and growth rate in Ulva ohnoi (Chlorophyta) , 2014, Journal of phycology.

[7]  Q. Béchet,et al.  Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation. , 2013, Biotechnology advances.

[8]  N. Paul,et al.  Algal Bioremediation of Waste Waters from Land-Based Aquaculture Using Ulva: Selecting Target Species and Strains , 2013, PloS one.

[9]  H. Yokoyama,et al.  Bioindicator and biofilter function of Ulva spp. (Chlorophyta) for dissolved inorganic nitrogen discharged from a coastal fish farm — potential role in integrated multi-trophic aquaculture , 2010 .

[10]  L. Mata,et al.  A direct comparison of the performance of the seaweed biofilters, Asparagopsis armata and Ulva rigida , 2010, Journal of Applied Phycology.

[11]  F. Figueroa,et al.  Effects of nutrient supply on photosynthesis and pigmentation in Ulva lactuca (Chlorophyta): responses to short-term stress , 2009 .

[12]  J. Bolton,et al.  Growing Ulva (Chlorophyta) in integrated systems as a commercial crop for abalone feed in South Africa: a SWOT analysis , 2009, Journal of Applied Phycology.

[13]  Joan Oca,et al.  Measurement of sole activity by digital image analysis , 2009 .

[14]  Manuel Manchado,et al.  Growth, feeding and oxygen consumption of Senegalese sole (Solea senegalensis) juveniles stocked at different densities , 2008 .

[15]  Alejandro J. Souza,et al.  Modelling Zostera marina and Ulva spp. in a coastal lagoon , 2008 .

[16]  M. Lahaye,et al.  Structure and functional properties of ulvan, a polysaccharide from green seaweeds. , 2007, Biomacromolecules.

[17]  R. Coutinho,et al.  Modeling Ulva spp. dynamics in a tropical upwelling region , 2005 .

[18]  G. Rorrer,et al.  Bioprocess engineering of cell and tissue cultures for marine seaweeds , 2004 .

[19]  P. Fong,et al.  Physiological responses of a bloom-forming green macroalga to short-term change in salinity, nutrients, and light help explain its ecological success , 2004 .

[20]  Yeoung-Sang Yun,et al.  Kinetic modeling of the light-dependent photosynthetic activity of the green microalga Chlorella vulgaris. , 2003, Biotechnology and bioengineering.

[21]  Paul C. Silva,et al.  Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera , 2003 .

[22]  I. Martins,et al.  A model for the growth of opportunistic macroalgae (Enteromorpha sp.) in tidal Estuaries , 2002 .

[23]  Manfred Ehrhardt,et al.  Methods of seawater analysis , 1999 .

[24]  Adriano Sfriso,et al.  Simulation model of Ulva rigida growth in shallow water of the Lagoon of Venice , 1997 .

[25]  Cosimo Solidoro,et al.  Modelling macroalgae (Ulva rigida) in the Venice lagoon: Model structure identification and first parameters estimation , 1997 .

[26]  M. J. Río,et al.  Ulva rigida (Ulvales, Chlorophyta) tank culture as biofilters for dissolved inorganic nitrogen from fishpond effluents , 1996, Hydrobiologia.

[27]  J. Sevilla,et al.  A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances , 1996 .

[28]  P. Harrison,et al.  Seaweed ecology and physiology: Morphology, life histories, and morphogenesis , 1994 .

[29]  G. Bendoricchio,et al.  A trophic model for Ulva rigida in the Lagoon of Venice , 1994 .

[30]  J. Manhart Phylogenetic analysis of green plant rbcL sequences. , 1994, Molecular phylogenetics and evolution.

[31]  P. Duarte,et al.  A methodology for parameter estimation in seaweed productivity modelling , 1993, Hydrobiologia.

[32]  R. Coutinho,et al.  Interactions of light and nitrogen on photosynthesis and growth of the marine macroalga Ulva curvata (Kützing) De Toni , 1993 .

[33]  E. Evers,et al.  A model for light‐limited continuous cultures: Growth, shading, and maintenance , 1991, Biotechnology and bioengineering.

[34]  P. Falkowski,et al.  ACCLIMATION TO SPECTRAL IRRADIANCE IN ALGAE , 1991 .

[35]  Martínez,et al.  A comparative study of the effect of pH and inorganic carbon resources on the photosynthesis of three floating macroalgae species of a Mediterranean coastal lagoon. , 2001, Journal of experimental marine biology and ecology.

[36]  P. Harrison,et al.  Seaweed ecology and physiology: References , 1994 .

[37]  A. Neori,et al.  Ulva lactuca Biofilters for Marine Fishpond Effluents. II. Growth Rate, Yield and C:N Ratio , 1991 .

[38]  C. S. Duke,et al.  Effect of temperature on nitrogen-limited growth rate and chemical composition of Ulva curvata (Ulvales: Chlorophyta) , 1989 .

[39]  A. E. Greenberg,et al.  Standard methods for the examination of water and wastewater : supplement to the sixteenth edition , 1988 .

[40]  R. Bidwell,et al.  Tank Cultivation of Irish Moss, Chondrus crispus Stackh. , 1985 .