Identification of cancer driver genes using Sleeping Beauty transposon mutagenesis

Cancer genome sequencing studies have identified driver genes for a variety of different cancers and helped to understand the genetic landscape of human cancer. It is still challenging, however, to identify cancer driver genes with confidence simply from genetic data alone. In vivo forward genetic screens using Sleeping Beauty (SB) transposon mutagenesis provides another powerful genetic tool for identifying candidate cancer driver genes in wild‐type and sensitized mouse tumors. By comparing cancer driver genes identified in human and mouse tumors, cancer driver genes can be identified with additional confidence based upon comparative oncogenomics. This review describes how SB mutagenesis works in mice and focuses on studies that have identified cancer driver genes in the mouse gastrointestinal tract.

[1]  K. Alitalo,et al.  Expression of R-spondin1 in ApcMin/+ Mice Reduces Growth of Intestinal Adenomas by Altering Wnt and TGFB Signaling. , 2020, Gastroenterology.

[2]  R. Rad,et al.  In vivo functional screening for systems-level integrative cancer genomics , 2020, Nature Reviews Cancer.

[3]  A. Levine p53: 800 million years of evolution and 40 years of discovery , 2020, Nature Reviews Cancer.

[4]  N. Copeland,et al.  CRISPR-Cas9–mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes , 2019, Proceedings of the National Academy of Sciences.

[5]  A. Levine,et al.  The Roles of Initiating Truncal Mutations in Human Cancers: The Order of Mutations and Tumor Cell Type Matters. , 2019, Cancer cell.

[6]  Jing Wang,et al.  R-Spondin1/LGR5 Activates TGFβ Signaling and Suppresses Colon Cancer Metastasis. , 2017, Cancer research.

[7]  Justin Newberg,et al.  SBCDDB: Sleeping Beauty Cancer Driver Database for gene discovery in mouse models of human cancers , 2017, Nucleic Acids Res..

[8]  D. Adams,et al.  Insertional mutagenesis identifies drivers of a novel oncogenic pathway in invasive lobular breast carcinoma , 2017, Nature Genetics.

[9]  T. Takeda,et al.  Crystallization and hardening of poly(ethylene-co-vinyl acetate) mouthguards during routine use , 2017, Scientific Reports.

[10]  Eric Y. Durand,et al.  Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf−/− mouse model , 2017, Proceedings of the National Academy of Sciences.

[11]  J. Takeda,et al.  Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus , 2017, Scientific Reports.

[12]  J. Davison,et al.  Transposon mutagenesis identifies candidate genes that cooperate with loss of transforming growth factor‐beta signaling in mouse intestinal neoplasms , 2017, International journal of cancer.

[13]  Michael B. Mann,et al.  Transposon mutagenesis identifies genes that cooperate with mutant Pten in breast cancer progression , 2016, Proceedings of the National Academy of Sciences.

[14]  N. Copeland,et al.  Two-Step Forward Genetic Screen in Mice Identifies Ral GTPase-Activating Proteins as Suppressors of Hepatocellular Carcinoma. , 2016, Gastroenterology.

[15]  Eric S. Lander,et al.  Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma , 2016, Cell reports.

[16]  A. Rust,et al.  Sleeping Beauty transposon mutagenesis identifies genes that cooperate with mutant Smad4 in gastric cancer development , 2016, Proceedings of the National Academy of Sciences.

[17]  Gary D. Bader,et al.  Divergent clonal selection dominates medulloblastoma at recurrence , 2016, Nature.

[18]  Jacqueline R. Kemp,et al.  Crossing the LINE Toward Genomic Instability: LINE-1 Retrotransposition in Cancer , 2015, Front. Chem..

[19]  Michael B. Mann,et al.  Transposon mutagenesis identifies genetic drivers of BrafV600E melanoma , 2015, Nature Genetics.

[20]  Michael B. Mann,et al.  Transposon mutagenesis identifies genes and evolutionary forces driving gastrointestinal tract tumor progression , 2015, Nature Genetics.

[21]  Yen-Yi Ho,et al.  The Candidate Cancer Gene Database: a database of cancer driver genes from forward genetic screens in mice , 2014, Nucleic Acids Res..

[22]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of gastric adenocarcinoma , 2014, Nature.

[23]  Johann de Jong,et al.  Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model , 2013, Nature Genetics.

[24]  Melissa J. Davis,et al.  Sleeping Beauty mutagenesis in a mouse medulloblastoma model defines networks that discriminate between human molecular subgroups , 2013, Proceedings of the National Academy of Sciences.

[25]  Jeffrey J Meyer,et al.  Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012. (5) , 2013 .

[26]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[27]  Melanie A. Huntley,et al.  Recurrent R-spondin fusions in colon cancer , 2012, Nature.

[28]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[29]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[30]  G. Kristiansen,et al.  The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma , 2012, Nature.

[31]  A. Rust,et al.  Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma , 2012, Proceedings of the National Academy of Sciences.

[32]  A. Rust,et al.  Insertional mutagenesis identifies multiple networks of co-operating genes driving intestinal tumorigenesis , 2011, Nature Genetics.

[33]  Hans Clevers,et al.  Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling , 2011, Nature.

[34]  D. Largaespada,et al.  A Sleeping Beauty transposon-mediated screen identifies murine susceptibility genes for adenomatous polyposis coli (Apc)-dependent intestinal tumorigenesis , 2011, Proceedings of the National Academy of Sciences.

[35]  Lia S. Campos,et al.  PiggyBac Transposon Mutagenesis: A Tool for Cancer Gene Discovery in Mice , 2010, Science.

[36]  N. Copeland,et al.  Harnessing transposons for cancer gene discovery , 2010, Nature Reviews Cancer.

[37]  T. Scheetz,et al.  A modified sleeping beauty transposon system that can be used to model a wide variety of human cancers in mice. , 2009, Cancer research.

[38]  Jaap Kool,et al.  High-throughput insertional mutagenesis screens in mice to identify oncogenic networks , 2009, Nature Reviews Cancer.

[39]  H. Clevers,et al.  Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche , 2009, Nature.

[40]  Y. Asmann,et al.  A Transposon-Based Genetic Screen in Mice Identifies Genes Altered in Colorectal Cancer , 2009, Science.

[41]  Derek Y. Chiang,et al.  A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma , 2009, Nature Biotechnology.

[42]  C. Der Faculty Opinions recommendation of Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. , 2008 .

[43]  A. Sparks,et al.  The Genomic Landscapes of Human Breast and Colorectal Cancers , 2007, Science.

[44]  Corey M. Carlson,et al.  Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse , 2005, Nature.

[45]  D. Largaespada,et al.  Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system , 2005, Nature.

[46]  H. Clevers,et al.  Wnt, stem cells and cancer in the intestine , 2005, Biology of the cell.

[47]  T. Jacks,et al.  Mutant p53 Gain of Function in Two Mouse Models of Li-Fraumeni Syndrome , 2004, Cell.

[48]  Daniel Metzger,et al.  Tissue‐specific and inducible Cre‐mediated recombination in the gut epithelium , 2004, Genesis.

[49]  O. Sansom,et al.  Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of beta-catenin. , 2004, Gastroenterology.

[50]  R. DePinho,et al.  Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. , 2004, Cancer cell.

[51]  H. Moses,et al.  Conditional inactivation of the TGF‐β type II receptor using Cre:Lox , 2002, Genesis.

[52]  M Oshima,et al.  Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. , 1999, Cancer research.

[53]  Hiroyuki Miyoshi,et al.  Intestinal Tumorigenesis in Compound Mutant Mice of both Dpc4(Smad4) and Apc Genes , 1998, Cell.

[54]  R. Plasterk,et al.  Molecular Reconstruction of Sleeping Beauty , a Tc1-like Transposon from Fish, and Its Transposition in Human Cells , 1997, Cell.

[55]  T. Noda,et al.  Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. , 1997, Science.

[56]  K. Kinzler,et al.  Lessons from Hereditary Colorectal Cancer , 1996, Cell.

[57]  M Oshima,et al.  Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[58]  K. Kinzler,et al.  Erratum: Multiple Intestinal Neoplasia Caused By a Mutation in the Murine Homolog of the APC Gene , 1992, Science.

[59]  H. Pitot,et al.  A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. , 1990, Science.

[60]  J. L. Bos,et al.  ras oncogenes in human cancer: a review. , 1989, Cancer research.

[61]  David A Largaespada,et al.  Transposon mutagenesis in mice. , 2009, Methods in molecular biology.

[62]  Jaap Kool,et al.  High throughput insertional mutagenesis screens in mice to identify oncogenic networks , 2009, Nature Reviews Cancer.

[63]  Takeshi Suzuki,et al.  RTCGD: retroviral tagged cancer gene database , 2004, Nucleic Acids Res..