Global Optimization of Near-Surface Potential Field Anomalies Through Metaheuristics

In this study, global optimizations of the data sets obtained from potential field method applications including self-potential (SP), magnetic and gravity have been presented through particle swarm optimization (PSO), differential evolution algorithm (DEA) and differential search algorithm (DSA), respectively. Both synthetically produced and real field anomalies due to various kinds of geological sources (e.g. sheet, horizontal cylinder, sphere and fault) have been used to show the capability of those population-based metaheuristic algorithms. Firstly, error energy maps have been produced for each model parameter pairs in every synthetic example to reveal the mathematical nature of the inverse problems under consideration. These maps have clearly helped us assess the resolvability of the model parameters for the given problem. Metropolis–Hastings (M–H) sampling algorithm has been used to perform uncertainty analyses. Produced histograms of synthetic data cases have provide insight to the reliability of the estimated parameters. Additionally, the reliabilities of the solutions have been also tested via probability density function (PDF) applications. After performing successful synthetic studies on model parameter estimations, three real data examples including an SP anomaly from a sulphide mineralization zone (India), a total field magnetic anomaly from a fold belt (Australia) and a gravity anomaly from a chromite deposit (Cuba) have been inverted through PSO, DEA and DSA, respectively. Satisfactory solutions in well agreement with the results of previous studies have been obtained.

[1]  W. E. Davis,et al.  Gravity prospecting for chromite deposits in Camaguey Province, Cuba , 1957 .

[2]  M. K. Paul DIRECT INTERPRETATION OF SELF‐POTENTIAL ANOMALIES CAUSED BY INCLINED SHEETS OF INFINITE HORIZONTAL EXTENSIONS , 1965 .

[3]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[4]  S. Reddy,et al.  Interpretation of self-potential anomalies of some simple geometric bodies , 1970 .

[5]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[6]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[7]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[8]  I. R. Qureshi,et al.  A METHOD FOR THE DIRECT INTERPRETATION OF MAGNETIC ANOMALIES CAUSED BY TWO‐DIMENSIONAL VERTICAL FAULTS , 1978 .

[9]  B. Murty,et al.  Nomogram for the complete interpretation of spontaneous potential profiles over sheet-like and cylindrical two-dimensional sources , 1985 .

[10]  E. S. Robinson,et al.  Basic exploration geophysics , 1988 .

[11]  E. Abdelrahman,et al.  Gravity interpretation using correlation factors between successive least‐squares residual anomalies , 1989 .

[12]  I. V. R. Murthy,et al.  Automatic inversion of self-potential anomalies of sheet-like bodies , 1993 .

[13]  Max A. Meju,et al.  Geophysical data analysis , 1994 .

[14]  Douglas W. Oldenburg,et al.  3-D inversion of magnetic data , 1996 .

[15]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[16]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[17]  Mrinal K. Sen,et al.  Hybrid optimization methods for geophysical inversion , 1997 .

[18]  I. V. R. Murthy M-40. Gravity and Magnetic Interpretation in Exploration Geophysics , 1998 .

[19]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[20]  N. Sundararajan,et al.  An analytical method to interpret self-potential anomalies caused by 2-D inclined sheets , 1998 .

[21]  L. Roy Short note: Source geometry identification by simultaneous use of structural index and shape factor , 2001 .

[22]  I. V. R. Murthy,et al.  Automatic inversion of magnetic anomalies of faults , 2001 .

[23]  M. Zhdanov,et al.  3‐D magnetic inversion with data compression and image focusing , 2002 .

[24]  I. Roy A robust descent type algorithm for geophysical inversion through adaptive regularization , 2002 .

[25]  K. Ushijima,et al.  Depth determination from residual gravity anomaly data using a simple formula , 2003 .

[26]  D. Oldenburg,et al.  Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method , 2003 .

[27]  M. Meju,et al.  Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints , 2004 .

[28]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[29]  R. Weger,et al.  Three-dimensional ground-penetrating radar imaging of sedimentary structures, fractures, and archaeological features at submeter resolution , 2004 .

[30]  I. V. Radhakrishna Murthy,et al.  A new method of interpreting self-potential anomalies of two-dimensional inclined sheets , 2005, Comput. Geosci..

[31]  Saudi Arabia,et al.  Self-Potential Inversion Using Genetic Algorithm , 2006 .

[32]  C. Sarı,et al.  Sediment thicknesses of the western Anatolia graben structures determined by 2D and 3D analysis using gravity data , 2006 .

[33]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[34]  Irfan Akca,et al.  Hybrid genetic algorithms in view of the evolution theories with application for the electrical sounding method , 2007 .

[35]  Y. L. Ekinci,et al.  A Damped Least-Squares Inversion Program for the Interpretation of Schlumberger Sounding Curves , 2008 .

[36]  Amit Konar,et al.  Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives , 2008, Advances of Computational Intelligence in Industrial Systems.

[37]  J. Asfahani,et al.  An Automatic Method of Direct Interpretation of Residual Gravity Anomaly Profiles due to Spheres and Cylinders , 2008 .

[38]  E. Haber,et al.  Numerical methods for experimental design of large-scale linear ill-posed inverse problems , 2008 .

[39]  D. Rucker,et al.  Electrical Resistivity Characterization of a Reclaimed Gold Mine to Delineate Acid Rock Drainage Pathways , 2009 .

[40]  Mansour A. Al-Garni,et al.  Inversion of self-potential anomalies caused by 2D inclined sheets using neural networks , 2009 .

[41]  Fernando A. Monteiro Santos,et al.  Inversion of self-potential of idealized bodies' anomalies using particle swarm optimization , 2010, Comput. Geosci..

[42]  S. Srivastava,et al.  Inversion of the amplitude of the two‐dimensional analytic signal of the magnetic anomaly by the particle swarm optimization technique , 2010 .

[43]  Esperanza García Gonzalo,et al.  PSO: A powerful algorithm to solve geophysical inverse problems: Application to a 1D-DC resistivity case , 2010 .

[44]  A. Gholami,et al.  Regularization of linear and non-linear geophysical ill-posed problems with joint sparsity constraints , 2010 .

[45]  C. Ertekin,et al.  Characterization of a Landslide using Seismic Refraction, Electrical Resistivity and Hydrometer Methods, Adatepe—Çanakkale, NW Turkey , 2011 .

[46]  Gökhan Göktürkler A hybrid approach for tomographic inversion of crosshole seismic first-arrival times , 2011 .

[47]  P. Smith,et al.  A rapid technique for estimating the depth and width of a two-dimensional plate from self-potential data , 2011 .

[48]  R. K. Tiwari,et al.  Inversion of Schlumberger resistivity sounding data from the critically dynamic Koyna region using the Hybrid Monte Carlo-based neural network approach , 2011 .

[49]  E. Pekșen,et al.  Application of particle swarm optimization on self-potential data , 2011 .

[50]  Ajith Abraham,et al.  Inertia Weight strategies in Particle Swarm Optimization , 2011, 2011 Third World Congress on Nature and Biologically Inspired Computing.

[51]  E. Ulugergerli Two dimensional combined inversion of short- and long-normal dc resistivity well log data , 2011 .

[52]  M. Zhdanov,et al.  Large‐scale 3D inversion of potential field data , 2012 .

[53]  Y. L. Ekinci,et al.  A geophysical approach to the igneous rocks in the Biga Peninsula (NW Turkey) based on airborne magnetic anomalies: geological implications , 2012 .

[54]  Çağlayan Balkaya,et al.  Inversion of self-potential anomalies caused by simple-geometry bodies using global optimization algorithms , 2012 .

[55]  Pinar Civicioglu,et al.  Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm , 2012, Comput. Geosci..

[56]  Pandian Vasant,et al.  Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance , 2012 .

[57]  Y. L. Ekinci,et al.  Exploration for a cave by magnetic and electrical resistivity surveys: Ayvacık Sinkhole example, Bozdağ, İzmir (western Turkey) , 2012 .

[58]  Ç. Balkaya An implementation of differential evolution algorithm for inversion of geoelectrical data , 2013 .

[59]  A. Biswas,et al.  Interpretation of self-potential anomaly over a 2D inclined structure using very fast simulated-annealing global optimization — An insight about ambiguity , 2013 .

[60]  Reza Toushmalani Comparison result of inversion of gravity data of a fault by particle swarm optimization and Levenberg-Marquardt methods , 2013, SpringerPlus.

[61]  Pinar Civicioglu,et al.  CIRCULAR ANTENNA ARRAY DESIGN BY USING EVOLUTIONARY SEARCH ALGORITHMS , 2013 .

[62]  Xiangyun Hu,et al.  A Stochastic Inversion Method for Potential Field Data: Ant Colony Optimization , 2014, Pure and Applied Geophysics.

[63]  M. Öztürk,et al.  First record of beachrock on Black Sea coast of Turkey: Implications for Late Holocene sea-level fluctuations , 2013 .

[64]  A. Malehmir,et al.  Integrated 2D modeling and interpretation of geophysical and geotechnical data to delineate quick clays at a landslide site in southwest Sweden , 2014 .

[65]  E. Pekșen,et al.  1-D DC Resistivity Modeling and Interpretation in Anisotropic Media Using Particle Swarm Optimization , 2014, Pure and Applied Geophysics.

[66]  Ji Wang,et al.  Counterexample-Preserving Reduction for Symbolic Model Checking , 2013, ICTAC.

[67]  S. Mehanee Accurate and Efficient Regularized Inversion Approach for the Interpretation of Isolated Gravity Anomalies , 2014, Pure and Applied Geophysics.

[68]  Khalid S. Essa,et al.  New fast least-squares algorithm for estimating the best-fitting parameters due to simple geometric-structures from gravity anomalies , 2013, Journal of advanced research.

[69]  Bo Liu Composite Differential Search Algorithm , 2014, J. Appl. Math..

[70]  A. Biswas,et al.  Optimization of self-potential interpretation of 2-D inclined sheet-type structures based on very fast simulated annealing and analysis of ambiguity , 2014 .

[71]  A. Biswas Interpretation of residual gravity anomaly caused by simple shaped bodies using very fast simulated annealing global optimization , 2015 .

[72]  Jianchao Cai,et al.  Ant colony optimisation inversion of surface and borehole magnetic data under lithological constraints , 2015 .

[73]  K. Essa,et al.  2.5D regularized inversion for the interpretation of residual gravity data by a dipping thin sheet: numerical examples and case studies with an insight on sensitivity and non-uniqueness , 2015, Earth, Planets and Space.

[74]  Y. L. Ekinci,et al.  Interpretation of gravity anomalies to delineate some structural features of Biga and Gelibolu peninsulas, and their surroundings (north-west Turkey) , 2015 .

[75]  A. Biswas,et al.  Application of Global Particle Swarm Optimization for Inversion of Residual Gravity Anomalies Over Geological Bodies with Idealized Geometries , 2016, Natural Resources Research.

[76]  Hongzhu Cai,et al.  Modeling and Inversion of Magnetic Anomalies Caused by Sediment–Basement Interface Using Three-Dimensional Cauchy-Type Integrals , 2015, IEEE Geoscience and Remote Sensing Letters.

[77]  J. Fernández-Martínez,et al.  3D gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization , 2015 .

[78]  A. Aydemir,et al.  Modeling of shallow structures in the Cappadocia region using gravity and aeromagnetic anomalies , 2016 .

[79]  A. Biswas Interpretation of gravity and magnetic anomaly over thin sheet-type structure using very fast simulated annealing global optimization technique , 2016, Modeling Earth Systems and Environment.

[80]  Leopoldo Milano,et al.  Self-potential data inversion through a Genetic-Price algorithm , 2016, Comput. Geosci..

[81]  Y. L. Ekinci MATLAB-based algorithm to estimate depths of isolated thin dike-like sources using higher-order horizontal derivatives of magnetic anomalies , 2016, SpringerPlus.

[82]  Y. L. Ekinci,et al.  Model parameter estimations from residual gravity anomalies due to simple-shaped sources using Differential Evolution Algorithm☆ , 2016 .

[83]  Y. L. Ekinci,et al.  3D non-linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm , 2017 .

[84]  Sushil Kumar,et al.  Global nonlinear optimization for the interpretation of source parameters from total gradient of gravity and magnetic anomalies caused by thin dyke , 2017 .

[85]  Y. L. Ekinci,et al.  Amplitude inversion of the 2D analytic signal of magnetic anomalies through the differential evolution algorithm , 2017 .

[86]  I. Kaftan Interpretation of magnetic anomalies using a genetic algorithm , 2017, Acta Geophysica.

[87]  C. Petit,et al.  Lithospheric flexural strength and effective elastic thicknesses of the Eastern Anatolia (Turkey) and surrounding region , 2017 .

[88]  A. Biswas A review on modeling, inversion and interpretation of self-potential in mineral exploration and tracing paleo-shear zones , 2017 .

[89]  J. Igel,et al.  3D architecture of cyclic-step and antidune deposits in glacigenic subaqueous fan and delta settings: Integrating outcrop and ground-penetrating radar data , 2017 .

[90]  Çağlayan Balkaya,et al.  Parameter estimation by Differential Search Algorithm from horizontal loop electromagnetic (HLEM) data , 2018 .

[91]  K. Essa,et al.  PSO (Particle Swarm Optimization) for Interpretation of Magnetic Anomalies Caused by Simple Geometrical Structures , 2018, Pure and Applied Geophysics.

[92]  Jide Nosakare Ogunbo,et al.  MATLAB code for data-driven initial model of 1D Schlumberger sounding curve , 2018 .