QSPR Correlation of the Melting Point for Pyridinium Bromides, Potential Ionic Liquids

In an attempt to develop predictive tools for the determination of new ionic liquid solvents, QSPR models for the melting points of 126 structurally diverse pyridinium bromides in the temperature range 30-200 degrees C were developed with the CODESSA program. Six- and two-descriptor equations with squared correlation coefficients (R(2)) of 0.788 and 0.713, respectively, are reported for the melting temperatures. The models illustrate the importance of information content indices, total entropy, and the average nucleophilic reactivity index for an N atom.

[1]  G J Lye,et al.  Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. , 2000, Biotechnology and bioengineering.

[2]  Paul T. Anastas THE UNITED STATES GREEN CHEMISTRY PROGRAM , 1999 .

[3]  P. Wasserscheid,et al.  Ionic Liquids-New "Solutions" for Transition Metal Catalysis. , 2000, Angewandte Chemie.

[4]  Robin D. Rogers,et al.  Traditional Extractants in Nontraditional Solvents: Groups 1 and 2 Extraction by Crown Ethers in Room-Temperature Ionic Liquids† , 2000 .

[5]  K. R. Seddon Ionic Liquids for Clean Technology , 1997 .

[6]  Alan R. Katritzky,et al.  Prediction of Melting Points for the Substituted Benzenes: A QSPR Approach , 1997, J. Chem. Inf. Comput. Sci..

[7]  C. Hussey,et al.  Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis , 1982 .

[8]  M. Karelson,et al.  Structurally diverse quantitative structure--property relationship correlations of technologically relevant physical properties , 2000, Journal of chemical information and computer sciences.

[9]  Paola Gramatica,et al.  3D-modelling and prediction by WHIM descriptors. Part 9. Chromatographic relative retention time and physico-chemical properties of polychlorinated biphenyls (PCBs) , 1998 .

[10]  C. L. Hussey Room temperature haloaluminate ionic liquids. Novel solvents for transition metal solution chemistry , 1988 .

[11]  Carlos W. Lee,et al.  Diels-Alder reactions in chloroaluminate ionic liquids: acceleration and selectivity enhancement , 1999 .

[12]  M. Karelson Molecular descriptors in QSAR/QSPR , 2000 .

[13]  Robin D. Rogers,et al.  Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation , 2001 .

[14]  T. Welton Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. , 1999, Chemical reviews.

[15]  Maria Forsyth,et al.  High conductivity molten salts based on the imide ion , 2000 .

[16]  K. R. Seddon,et al.  The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals , 1999 .

[17]  H. Olivier Recent developments in the use of non-aqueous ionic liquids for two-phase catalysis , 1999 .

[18]  J. Brennecke,et al.  Recovery of Organic Products from Ionic Liquids Using Supercritical Carbon Dioxide , 2001 .

[19]  Tom Welton,et al.  Diels-Alder reactions in room-temperature ionic liquids , 1999 .

[20]  Robin D. Rogers,et al.  Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction , 1998 .

[21]  Alan R. Katritzky,et al.  QSPR and QSAR Models Derived Using Large Molecular Descriptor Spaces. A Review of CODESSA Applications , 1999 .

[22]  Robin D. Rogers,et al.  LIQUID/LIQUID EXTRACTION OF METAL IONS IN ROOM TEMPERATURE IONIC LIQUIDS , 2001 .

[23]  Sandra Einloft,et al.  Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation , 1998 .

[24]  M. Grätzel,et al.  Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. , 1996, Inorganic chemistry.

[25]  M. Freemantle DESIGNER SOLVENTS : IONIC LIQUIDS MAY BOOST CLEAN TECHNOLOGY DEVELOPMENT , 1998 .