Infrared photovoltaics made by solution processing

[1]  O. Inganäs,et al.  A Conjugated Polymer for Near Infrared Optoelectronic Applications , 2007 .

[2]  C. Winder,et al.  Low bandgap polymers for photon harvesting in bulk heterojunction solar cells , 2004 .

[3]  Xinyi Zhang,et al.  Synthesis and ferroelectric properties of multiferroic BiFeO3 nanotube arrays , 2005 .

[4]  Edward H. Sargent,et al.  Schottky-quantum dot photovoltaics for efficient infrared power conversion , 2008 .

[5]  G. Konstantatos,et al.  Enhanced infrared photovoltaic efficiency in PbS nanocrystal/semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier , 2005 .

[6]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[7]  Charlotte K. Williams,et al.  Charge recombination in organic photovoltaic devices with high open-circuit voltages. , 2008, Journal of the American Chemical Society.

[8]  M. Beard Multiple Exciton Generation in Semiconductor Quantum Dots. , 2011, The journal of physical chemistry letters.

[9]  Richard R. King,et al.  Multijunction cells: Record breakers , 2008 .

[10]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[11]  Edward H. Sargent,et al.  Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. , 2008, ACS nano.

[12]  O. Inganäs,et al.  Enhanced Photocurrent Spectral Response in Low‐Bandgap Polyfluorene and C70‐Derivative‐Based Solar Cells , 2005 .

[13]  Kelly P. Knutsen,et al.  Multiple exciton generation in colloidal silicon nanocrystals. , 2007, Nano letters.

[14]  Edward H. Sargent,et al.  Schottky barriers to colloidal quantum dot films , 2007 .

[15]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[16]  Yong Cao,et al.  Near-infrared response photovoltaic device based on novel narrow band gap small molecule and PCBM fabricated by solution processing , 2007 .

[17]  K. Vahala,et al.  High-Q surface-plasmon-polariton whispering-gallery microcavity , 2009, Nature.

[18]  M. Beard,et al.  Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. , 2005, Nano letters.

[19]  Barbara K. Hughes,et al.  Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. , 2008, Journal of the American Chemical Society.

[20]  P. Würfel,et al.  Physics of solar cells , 2005 .

[21]  R. Schaller,et al.  High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence. , 2006, The journal of physical chemistry. B.

[22]  W. Warta,et al.  Solar cell efficiency tables (version 33) , 2009 .

[23]  O. Inganäs,et al.  Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative , 2004 .

[24]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[25]  E. Sargent,et al.  Solution Processed Photovoltaic Devices with 2% Infrared Monochromatic Power Conversion Efficiency: Performance Optimization and Oxide Formation , 2008 .

[26]  Larissa Levina,et al.  Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. , 2008, ACS nano.

[27]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[28]  Megahertz-frequency large-area optical modulators at 1.55 microm based on solution-cast colloidal quantum dots. , 2008, Optics express.

[29]  Matthew C. Beard,et al.  Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model. , 2008, Nano letters.

[30]  A. Zakhidov,et al.  PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron , 2007 .

[31]  T. Lutz,et al.  A PbS nanocrystal-C60 photovoltaic device for infrared light harvesting , 2007 .

[32]  Jun-Ho Yum,et al.  CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity , 2008 .

[33]  G. Konstantatos,et al.  Ultrasensitive solution-cast quantum dot photodetectors , 2006, Nature.

[34]  Antonio Luque,et al.  Solar Cells Based on Quantum Dots: Multiple Exciton Generation and Intermediate Bands , 2007 .

[35]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[36]  D. Dutton,et al.  Behavior of Lead Sulfide Photocells in the Ultraviolet , 1958 .

[37]  Amir Yacoby,et al.  Measurement of the conductance of single conjugated molecules , 2005, Nature.

[38]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[39]  V. Klimov Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication , 2006 .

[40]  N. S. Sariciftci,et al.  Hybrid solar cells using PbS nanoparticles , 2007 .

[41]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[42]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[43]  Byung-Ryool Hyun,et al.  Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. , 2008, ACS nano.

[44]  Matt Law,et al.  Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.

[45]  Edward H. Sargent,et al.  Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution , 2007 .

[46]  Larissa Levina,et al.  Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. , 2009, Nature nanotechnology.

[47]  Edward H. Sargent,et al.  Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. , 2008, Nano letters.

[48]  M. Beard,et al.  Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. , 2009, Nano letters.

[49]  Edward H. Sargent,et al.  Efficient Schottky-quantum-dot photovoltaics: The roles of depletion, drift, and diffusion , 2008 .

[50]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[51]  Mm Martijn Wienk,et al.  Low-band gap poly(di-2-thienylthienopyrazine):fullerene solar cells , 2006 .

[52]  Edward H. Sargent,et al.  Solution-processed infrared photovoltaic devices with >10% monochromatic internal quantum efficiency , 2005 .

[53]  M. Beard,et al.  PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. , 2006, Journal of the American Chemical Society.

[54]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .