Topic Modeling Using Latent Dirichlet allocation

We are not able to deal with a mammoth text corpus without summarizing them into a relatively small subset. A computational tool is extremely needed to understand such a gigantic pool of text. Probabilistic Topic Modeling discovers and explains the enormous collection of documents by reducing them in a topical subspace. In this work, we study the background and advancement of topic modeling techniques. We first introduce the preliminaries of the topic modeling techniques and review its extensions and variations, such as topic modeling over various domains, hierarchical topic modeling, word embedded topic models, and topic models in multilingual perspectives. Besides, the research work for topic modeling in a distributed environment, topic visualization approaches also have been explored. We also covered the implementation and evaluation techniques for topic models in brief. Comparison matrices have been shown over the experimental results of the various categories of topic modeling. Diverse technical challenges and future directions have been discussed.

[1]  William W. Cohen,et al.  Parallelized Variational EM for Latent Dirichlet Allocation: An Experimental Evaluation of Speed and Scalability , 2007, Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007).

[2]  Francis R. Bach,et al.  Online Learning for Latent Dirichlet Allocation , 2010, NIPS.

[3]  Aidong Zhang,et al.  A Correlated Topic Model Using Word Embeddings , 2017, IJCAI.

[4]  Tao Zhang,et al.  Cross Lingual Entity Linking with Bilingual Topic Model , 2013, IJCAI.

[5]  Andrew McCallum,et al.  Efficient methods for topic model inference on streaming document collections , 2009, KDD.

[6]  Xia Feng,et al.  Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey , 2017, Multimedia Tools and Applications.

[7]  Ralf Krestel,et al.  WELDA: Enhancing Topic Models by Incorporating Local Word Context , 2018, JCDL.

[8]  Xinbo Gao,et al.  Knowledge-Based Topic Model for Unsupervised Object Discovery and Localization , 2018, IEEE Transactions on Image Processing.

[9]  Chunfeng Yuan,et al.  A Hierarchical Model Based on Latent Dirichlet Allocation for Action Recognition , 2014, 2014 22nd International Conference on Pattern Recognition.

[10]  Mark Stevenson,et al.  Evaluating Topic Coherence Using Distributional Semantics , 2013, IWCS.

[11]  Di Jiang,et al.  Cross-Lingual Topic Discovery From Multilingual Search Engine Query Log , 2016, ACM Trans. Inf. Syst..

[12]  Qi He,et al.  TwitterRank: finding topic-sensitive influential twitterers , 2010, WSDM '10.

[13]  Inderjit S. Dhillon,et al.  A Scalable Asynchronous Distributed Algorithm for Topic Modeling , 2014, WWW.

[14]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[15]  Michael Elhadad,et al.  Redundancy-Aware Topic Modeling for Patient Record Notes , 2014, PloS one.

[16]  Xu Ling,et al.  Topic sentiment mixture: modeling facets and opinions in weblogs , 2007, WWW '07.

[17]  Zhongyuan Tian,et al.  Parallel Latent Dirichlet Allocation Using Vector Processors , 2019, 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS).

[18]  Quang Vu Bui,et al.  Distributed implementation of the latent Dirichlet allocation on Spark , 2016, SoICT.

[19]  Max Welling,et al.  Distributed Algorithms for Topic Models , 2009, J. Mach. Learn. Res..

[20]  Li Yun,et al.  Short Text Topic Modeling Techniques, Applications, and Performance: A Survey , 2019, IEEE Transactions on Knowledge and Data Engineering.

[21]  Zhiwu Lu,et al.  Latent semantic learning with structured sparse representation for human action recognition , 2011, Pattern Recognit..

[22]  Lino Wehrheim,et al.  Economic history goes digital: topic modeling the Journal of Economic History , 2018, Cliometrica.

[23]  Eric P. Xing,et al.  HM-BiTAM: Bilingual Topic Exploration, Word Alignment, and Translation , 2007, NIPS.

[24]  Paul A. Longley,et al.  The geography of Twitter topics in London , 2016, Comput. Environ. Urban Syst..

[25]  Hai Jin,et al.  Future Generation Computer Systems , 2022 .

[26]  Max Welling,et al.  Distributed Inference for Latent Dirichlet Allocation , 2007, NIPS.

[27]  Chong Wang,et al.  Continuous Time Dynamic Topic Models , 2008, UAI.

[28]  Weifeng Li,et al.  Supervised Topic Modeling Using Hierarchical Dirichlet Process-Based Inverse Regression: Experiments on E-Commerce Applications , 2018, IEEE Transactions on Knowledge and Data Engineering.

[29]  Alan L. Porter,et al.  Clustering scientific documents with topic modeling , 2014, Scientometrics.

[30]  Andrew McCallum,et al.  Topics over time: a non-Markov continuous-time model of topical trends , 2006, KDD '06.

[31]  Brian D. Davison,et al.  Predicting popular messages in Twitter , 2011, WWW.

[32]  Alexander J. Smola,et al.  Word Features for Latent Dirichlet Allocation , 2010, NIPS.

[33]  Michael J. Paul,et al.  Discovering Health Topics in Social Media Using Topic Models , 2014, PloS one.

[34]  Sinno Jialin Pan,et al.  Short and Sparse Text Topic Modeling via Self-Aggregation , 2015, IJCAI.

[35]  Xiaodong Liu,et al.  Multilingual Topic Models for Bilingual Dictionary Extraction , 2015, ACM Trans. Asian Low Resour. Lang. Inf. Process..

[36]  Petr Sojka,et al.  Software Framework for Topic Modelling with Large Corpora , 2010 .

[37]  전세경 2015 , 2018, Eu minha tía e o golpe do atraso.

[38]  Huifang Ma Hot topic extraction using time window , 2011, 2011 International Conference on Machine Learning and Cybernetics.

[39]  Dongwoo Kim,et al.  Hierarchical Dirichlet scaling process , 2014, Machine Learning.

[40]  Kenneth E. Shirley,et al.  LDAvis: A method for visualizing and interpreting topics , 2014 .

[41]  Jiebo Luo,et al.  Catching Fire via "Likes": Inferring Topic Preferences of Trump Followers on Twitter , 2016, ICWSM.

[42]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[43]  Jen-Tzung Chien,et al.  Latent Dirichlet learning for document summarization , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[44]  Rajarshi Das,et al.  Gaussian LDA for Topic Models with Word Embeddings , 2015, ACL.

[45]  Sanda M. Harabagiu,et al.  EmpaTweet: Annotating and Detecting Emotions on Twitter , 2012, LREC.

[46]  Younghoon Kim,et al.  TWILITE: A recommendation system for Twitter using a probabilistic model based on latent Dirichlet allocation , 2014, Inf. Syst..

[47]  Muhammad Taimoor Khan,et al.  Online Knowledge-Based Model for Big Data Topic Extraction , 2016, Comput. Intell. Neurosci..

[48]  Dong-Hong Ji,et al.  A topic-enhanced word embedding for Twitter sentiment classification , 2016, Inf. Sci..

[49]  Nanyun Peng,et al.  Learning Polylingual Topic Models from Code-Switched Social Media Documents , 2014, ACL.

[50]  Hui Xiong,et al.  Topic Modeling of Short Texts: A Pseudo-Document View , 2016, KDD.

[51]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[52]  Andrew McCallum,et al.  Polylingual Topic Models , 2009, EMNLP.

[53]  Jianwen Zhang,et al.  Evolutionary hierarchical dirichlet processes for multiple correlated time-varying corpora , 2010, KDD.

[54]  Susan T. Dumais,et al.  Characterizing Microblogs with Topic Models , 2010, ICWSM.

[55]  Qi Tian,et al.  Discovering Latent Topics by Gaussian Latent Dirichlet Allocation and Spectral Clustering , 2019, ACM Trans. Multim. Comput. Commun. Appl..

[56]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[57]  Timothy Baldwin,et al.  Machine Reading Tea Leaves: Automatically Evaluating Topic Coherence and Topic Model Quality , 2014, EACL.

[58]  Wei Jiang,et al.  Latent topic model for audio retrieval , 2014, Pattern Recognit..

[59]  Max Welling,et al.  Fast collapsed gibbs sampling for latent dirichlet allocation , 2008, KDD.

[60]  Jordan Boyd-Graber,et al.  Online Latent Dirichlet Allocation with Infinite Vocabulary , 2013, ICML.

[61]  Roberto Frias,et al.  Twitter event detection: combining wavelet analysis and topic inference summarization , 2011 .

[62]  Jordan L. Boyd-Graber,et al.  Interactive topic modeling , 2014, ACL.

[63]  Feng Yan,et al.  Parallel Inference for Latent Dirichlet Allocation on Graphics Processing Units , 2009, NIPS.

[64]  Philip Resnik,et al.  GIBBS SAMPLING FOR THE UNINITIATED , 2010 .

[65]  Yueshen Xu,et al.  Tackling topic general words in topic modeling , 2017, Eng. Appl. Artif. Intell..

[66]  Ahmed E. Hassan,et al.  Topic-based software defect explanation , 2017, J. Syst. Softw..

[67]  Mirella Lapata,et al.  Bayesian Word Sense Induction , 2009, EACL.

[68]  Dongwoo Kim,et al.  Accounting for data dependencies within a hierarchical dirichlet process mixture model , 2011, CIKM '11.

[69]  Xiao Liu,et al.  Attribute-restricted latent topic model for person re-identification , 2012, Pattern Recognit..

[70]  Jun S. Liu,et al.  The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem , 1994 .

[71]  Padhraic Smyth,et al.  Scalable Parallel Topic Models , 2006 .

[72]  Kai Zhang,et al.  Mining common topics from multiple asynchronous text streams , 2009, WSDM '09.

[73]  Juan-Zi Li,et al.  Knowledge discovery through directed probabilistic topic models: a survey , 2010, Frontiers of Computer Science in China.

[74]  Jure Leskovec,et al.  Meme-tracking and the dynamics of the news cycle , 2009, KDD.

[75]  Marie-Francine Moens,et al.  Probabilistic topic modeling in multilingual settings: An overview of its methodology and applications , 2015, Inf. Process. Manag..

[76]  Jianping Zeng,et al.  Topics modeling based on selective Zipf distribution , 2012, Expert Syst. Appl..

[77]  Denys Poshyvanyk,et al.  Using Latent Dirichlet Allocation for automatic categorization of software , 2009, 2009 6th IEEE International Working Conference on Mining Software Repositories.

[78]  مسعود رسول آبادی,et al.  2011 , 2012, The Winning Cars of the Indianapolis 500.

[79]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[80]  Eric P. Xing,et al.  BiTAM: Bilingual Topic AdMixture Models for Word Alignment , 2006, ACL.

[81]  Yueshen Xu,et al.  Hierarchical topic modeling with automatic knowledge mining , 2018, Expert Syst. Appl..

[82]  Gareth J. F. Jones,et al.  TopicVis: a GUI for topic-based feedback and navigation , 2013, SIGIR.

[83]  Timothy Baldwin,et al.  The Sensitivity of Topic Coherence Evaluation to Topic Cardinality , 2016, NAACL.

[84]  Zhiyuan Liu,et al.  PLDA+: Parallel latent dirichlet allocation with data placement and pipeline processing , 2011, TIST.

[85]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[86]  Elaine Zosa,et al.  Multilingual Dynamic Topic Model , 2019, RANLP.

[87]  Susan T. Dumais,et al.  Partially labeled topic models for interpretable text mining , 2011, KDD.

[88]  Philip Resnik,et al.  A Multilingual Topic Model for Learning Weighted Topic Links Across Corpora with Low Comparability , 2019, EMNLP.

[89]  Qinghua Zheng,et al.  Probabilistic Non-Negative Matrix Factorization and Its Robust Extensions for Topic Modeling , 2017, AAAI.

[90]  Khalid Alfalqi,et al.  A Survey of Topic Modeling in Text Mining , 2015 .

[91]  Andrew McCallum,et al.  Expertise modeling for matching papers with reviewers , 2007, KDD '07.

[92]  Kun Yang,et al.  Dynamic non-parametric joint sentiment topic mixture model , 2015, Knowl. Based Syst..

[93]  N. K. Nagwani,et al.  Summarizing large text collection using topic modeling and clustering based on MapReduce framework , 2015, Journal of Big Data.

[94]  Nizar Bouguila,et al.  Simultaneous Bayesian clustering and feature selection using RJMCMC-based learning of finite generalized Dirichlet mixture models , 2013, Signal Process..

[95]  David M. Blei,et al.  Topic Modeling in Embedding Spaces , 2019, Transactions of the Association for Computational Linguistics.

[96]  Letha H. Etzkorn,et al.  Bug localization using latent Dirichlet allocation , 2010, Inf. Softw. Technol..

[97]  Dongwoo Kim,et al.  Topic Chains for Understanding a News Corpus , 2011, CICLing.

[98]  Doug Downey,et al.  Efficient Methods for Incorporating Knowledge into Topic Models , 2015, EMNLP.

[99]  Lucy Vanderwende,et al.  Exploring Content Models for Multi-Document Summarization , 2009, NAACL.

[100]  Bin Cui,et al.  LDA*: A Robust and Large-scale Topic Modeling System , 2017, Proc. VLDB Endow..

[101]  Benjamin Renard,et al.  Bayesian topic model approaches to online and time-dependent clustering , 2015, Digit. Signal Process..

[102]  Hyeong-Ah Choi,et al.  Topic Modeling for Classification of Clinical Reports , 2017, ArXiv.

[103]  Nicholas A. Kraft,et al.  Changeset-Based Topic Modeling of Software Repositories , 2020, IEEE Transactions on Software Engineering.

[104]  David M. Blei,et al.  Supervised Topic Models , 2007, NIPS.

[105]  Daniel Barbará,et al.  On-line LDA: Adaptive Topic Models for Mining Text Streams with Applications to Topic Detection and Tracking , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[106]  John D. Lafferty,et al.  A correlated topic model of Science , 2007, 0708.3601.

[107]  Huaqing Min,et al.  Discovering Event Evolution Graphs Based on News Articles Relationships , 2014, 2014 IEEE 11th International Conference on e-Business Engineering.

[108]  Daniel Gatica-Perez,et al.  Discovering routines from large-scale human locations using probabilistic topic models , 2011, TIST.

[109]  Oleksandr Frei,et al.  BigARTM: Open Source Library for Regularized Multimodal Topic Modeling of Large Collections , 2015, AIST.

[110]  J. Manyika Big data: The next frontier for innovation, competition, and productivity , 2011 .

[111]  Konstantin Vorontsov,et al.  Additive regularization of topic models , 2015, Machine Learning.

[112]  Gareth J. F. Jones,et al.  Cross-Lingual Topical Relevance Models , 2012, COLING.

[113]  Yee Whye Teh,et al.  On Smoothing and Inference for Topic Models , 2009, UAI.

[114]  Jordan Boyd-Graber,et al.  Concurrent Visualization of Relationships between Words and Topics in Topic Models , 2014 .

[115]  Hua Xu,et al.  FastBTM: Reducing the sampling time for biterm topic model , 2017, Knowl. Based Syst..

[116]  Hareton K. N. Leung,et al.  MSR4SM: Using topic models to effectively mining software repositories for software maintenance tasks , 2015, Inf. Softw. Technol..

[117]  Gwenn Englebienne,et al.  Identifying multiple objects from their appearance in inaccurate detections , 2015, Comput. Vis. Image Underst..

[118]  Gregor Heinrich Parameter estimation for text analysis , 2009 .

[119]  Loni Hagen,et al.  Content analysis of e-petitions with topic modeling: How to train and evaluate LDA models? , 2018, Inf. Process. Manag..

[120]  Liqing Zhang,et al.  A hierarchical latent topic model based on sparse coding , 2012, Neurocomputing.

[121]  Christopher E. Moody,et al.  Mixing Dirichlet Topic Models and Word Embeddings to Make lda2vec , 2016, ArXiv.

[122]  Edward Y. Chang,et al.  PLDA: Parallel Latent Dirichlet Allocation for Large-Scale Applications , 2009, AAIM.

[123]  Ahmed E. Hassan,et al.  Studying software evolution using topic models , 2014, Sci. Comput. Program..

[124]  Jiafeng Guo,et al.  BTM: Topic Modeling over Short Texts , 2014, IEEE Transactions on Knowledge and Data Engineering.

[125]  Padhraic Smyth,et al.  TopicNets: Visual Analysis of Large Text Corpora with Topic Modeling , 2012, TIST.

[126]  Jeffrey Heer,et al.  Termite: visualization techniques for assessing textual topic models , 2012, AVI.

[127]  Min Song,et al.  Time gap analysis by the topic model-based temporal technique , 2014, J. Informetrics.

[128]  Yee Whye Teh,et al.  Sharing Clusters among Related Groups: Hierarchical Dirichlet Processes , 2004, NIPS.

[129]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[130]  Min Song,et al.  Analyzing the field of bioinformatics with the multi-faceted topic modeling technique , 2017, BMC Bioinformatics.

[131]  Thomas L. Griffiths,et al.  The Author-Topic Model for Authors and Documents , 2004, UAI.

[132]  Sushil Krishna Bajracharya,et al.  Mining concepts from code with probabilistic topic models , 2007, ASE.

[133]  Marie-Francine Moens,et al.  Cross-language linking of news stories on the web using interlingual topic modelling , 2009, CIKM-SWSM.

[134]  John Canny,et al.  SAME but Different: Fast and High Quality Gibbs Parameter Estimation , 2014, KDD.

[135]  Max Welling,et al.  Asynchronous Distributed Learning of Topic Models , 2008, NIPS.

[136]  Masoud Makrehchi Social link recommendation by learning hidden topics , 2011, RecSys '11.

[137]  Peter A. Chew,et al.  Term Weighting Schemes for Latent Dirichlet Allocation , 2010, NAACL.

[138]  Hong Cheng,et al.  The dual-sparse topic model: mining focused topics and focused terms in short text , 2014, WWW.

[139]  Marie-Francine Moens,et al.  Cross-language information retrieval models based on latent topic models trained with document-aligned comparable corpora , 2013, Information Retrieval.

[140]  Richard N. Taylor,et al.  Software traceability with topic modeling , 2010, 2010 ACM/IEEE 32nd International Conference on Software Engineering.

[141]  David M. Blei,et al.  Probabilistic topic models , 2012, Commun. ACM.

[142]  Aixin Sun,et al.  Topic Modeling for Short Texts with Auxiliary Word Embeddings , 2016, SIGIR.

[143]  Duc-Thuan Vo,et al.  Learning to classify short text from scientific documents using topic models with various types of knowledge , 2015, Expert Syst. Appl..

[144]  Måns Magnusson,et al.  Pulling Out the Stops: Rethinking Stopword Removal for Topic Models , 2017, EACL.

[145]  Alexander J. Smola,et al.  Latent LSTM Allocation: Joint Clustering and Non-Linear Dynamic Modeling of Sequence Data , 2017, ICML.

[146]  Hanna M. Wallach,et al.  Topic modeling: beyond bag-of-words , 2006, ICML.

[147]  Timothy Baldwin,et al.  Automatic Evaluation of Topic Coherence , 2010, NAACL.

[148]  Alexander J. Smola,et al.  An architecture for parallel topic models , 2010, Proc. VLDB Endow..

[149]  A. McCallum,et al.  Topical N-Grams: Phrase and Topic Discovery, with an Application to Information Retrieval , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[150]  Jordan L. Boyd-Graber,et al.  Mr. LDA: a flexible large scale topic modeling package using variational inference in MapReduce , 2012, WWW.

[151]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[152]  Alice H. Oh,et al.  Distributed Online Learning for Latent Dirichlet Allocation , 2012 .

[153]  Lise Getoor,et al.  Topic Modeling for Wikipedia Link Disambiguation , 2014, ACM Trans. Inf. Syst..

[154]  Aixin Sun,et al.  Enhancing Topic Modeling for Short Texts with Auxiliary Word Embeddings , 2017, ACM Trans. Inf. Syst..

[155]  Peng Zhang,et al.  Concept over time: the combination of probabilistic topic model with wikipedia knowledge , 2016, Expert Syst. Appl..

[156]  Ruslan Salakhutdinov,et al.  Evaluation methods for topic models , 2009, ICML '09.

[157]  Bryan Silverthorn,et al.  Spherical Topic Models , 2010, ICML.

[158]  Krishna P. Gummadi,et al.  Inferring user interests in the Twitter social network , 2014, RecSys '14.

[159]  Kun Lu,et al.  Measuring author research relatedness: A comparison of word-based, topic-based, and author cocitation approaches , 2012, J. Assoc. Inf. Sci. Technol..

[160]  David M. Blei,et al.  Relational Topic Models for Document Networks , 2009, AISTATS.

[161]  Andreas S. Weigend,et al.  A neural network approach to topic spotting , 1995 .

[162]  Fang Wan,et al.  Collective motion pattern inference via Locally Consistent Latent Dirichlet Allocation , 2016, Neurocomputing.

[163]  Yang Gao,et al.  Towards Topic Modeling for Big Data , 2014, ArXiv.

[164]  Srinivasan Parthasarathy,et al.  Parallel Latent Dirichlet Allocation on GPUs , 2018, ICCS.

[165]  Di Wang,et al.  Incremental learning with partial-supervision based on hierarchical Dirichlet process and the application for document classification , 2015, Appl. Soft Comput..

[166]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[167]  Saeid Nahavandi,et al.  Unsupervised mining of long time series based on latent topic model , 2013, Neurocomputing.

[168]  Sabine Loudcher,et al.  A Joint Model for Topic-Sentiment Evolution over Time , 2014, 2014 IEEE International Conference on Data Mining.

[169]  Sanjay Ghemawat,et al.  MapReduce: simplified data processing on large clusters , 2008, CACM.

[170]  Krysia Broda,et al.  Probabilistic Abductive Logic Programming using Dirichlet Priors , 2016, PLP@ICLP.

[171]  S. Mercy Shalinie,et al.  Design and evaluation of a parallel algorithm for inferring topic hierarchies , 2015, Inf. Process. Manag..

[172]  Thomas Hofmann,et al.  Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.

[173]  Rajeev Thakur,et al.  Optimization of Collective Communication Operations in MPICH , 2005, Int. J. High Perform. Comput. Appl..

[174]  Ramesh Nallapati,et al.  Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora , 2009, EMNLP.

[175]  Jan vom Brocke,et al.  Text Mining For Information Systems Researchers: An Annotated Topic Modeling Tutorial , 2016, Commun. Assoc. Inf. Syst..

[176]  Thomas L. Griffiths,et al.  The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies , 2007, JACM.

[177]  Ioannis Pitas,et al.  Video fingerprinting using Latent Dirichlet Allocation and facial images , 2012, Pattern Recognit..

[178]  Andrew McCallum,et al.  Organizing the OCA: learning faceted subjects from a library of digital books , 2007, JCDL '07.

[179]  David M. Blei,et al.  The Dynamic Embedded Topic Model , 2019, ArXiv.

[180]  Zhijun Yan,et al.  An Lda and Synonym Lexicon Based Approach to Product Feature Extraction from Online Consumer Product Reviews , 2013 .

[181]  John D. Lafferty,et al.  Dynamic topic models , 2006, ICML.

[182]  Dongwoo Kim,et al.  Modeling topic hierarchies with the recursive chinese restaurant process , 2012, CIKM.