TGF-β and Progression of Esophageal Cancer

[1]  H. Lahm,et al.  Role of transforming growth factor beta in colorectal cancer. , 2009, Growth factors.

[2]  H. Kuwano,et al.  TGF-β signaling in esophageal squamous cell carcinoma , 2005, Esophagus.

[3]  H. Kuwano,et al.  Plasma Level of Transforming Growth Factor β1 Measured from the Azygos Vein Predicts Prognosis in Patients with Esophageal Cancer , 2004, Clinical Cancer Research.

[4]  H. Kuwano,et al.  Increased expression of c‐Ski as a co‐repressor in transforming growth factor‐β signaling correlates with progression of esophageal squamous cell carcinoma , 2004, International journal of cancer.

[5]  T. Nakajima,et al.  Reduced expression of transforming growth factor‐β receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma , 2003, International journal of cancer.

[6]  K. Miyazono,et al.  Regulation of TGF‐β signaling and its roles in progression of tumors , 2003 .

[7]  H. Kuwano,et al.  High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cell carcinoma. , 2002, Cancer research.

[8]  D. Neuberg,et al.  Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. , 2002, Cancer research.

[9]  H. Kuwano,et al.  Decreased Smad4 expression in the transforming growth factor‐β signaling pathway during progression of esophageal squamous cell carcinoma , 2002, Cancer.

[10]  A. Reith,et al.  SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. , 2002, Molecular pharmacology.

[11]  S. Natsugoe,et al.  Smad4 and transforming growth factor beta1 expression in patients with squamous cell carcinoma of the esophagus. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[12]  H. Shirasawa,et al.  Alteration of integrin expression relates to malignant progression of human papillomavirus-immortalized esophageal keratinocytes. , 2002, Cancer letters.

[13]  L. Wakefield,et al.  TGF-β signaling: positive and negative effects on tumorigenesis , 2002 .

[14]  M W Kattan,et al.  Preoperative plasma levels of transforming growth factor β1 strongly predict clinical outcome in patients with bladder carcinoma , 2001, Cancer.

[15]  Allan Balmain,et al.  TGF-β signaling in tumor suppression and cancer progression , 2001, Nature Genetics.

[16]  Z Chen,et al.  Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[17]  R. Derynck,et al.  Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Wrana,et al.  Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. , 2000, Molecular cell.

[19]  Xia Lin,et al.  Smurf2 Is a Ubiquitin E3 Ligase Mediating Proteasome-dependent Degradation of Smad2 in Transforming Growth Factor-β Signaling* 210 , 2000, The Journal of Biological Chemistry.

[20]  H. Kuwano,et al.  Mutation analysis of transforming growth factor beta type II receptor, Smad2, Smad3 and Smad4 in esophageal squamous cell carcinoma. , 2000, International journal of oncology.

[21]  A. Ciechanover,et al.  The ubiquitin system , 2000, Nature Medicine.

[22]  A. Moustakas,et al.  Role of Smad Proteins and Transcription Factor Sp1 in p21Waf1/Cip1 Regulation by Transforming Growth Factor-β* , 2000, The Journal of Biological Chemistry.

[23]  O. Volpert,et al.  Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Y. Doki,et al.  Clinical application of malignancy potential grading as a prognostic factor of human esophageal cancers. , 2000, Surgery.

[25]  J. Massagué,et al.  Transcriptional control by the TGF‐β/Smad signaling system , 2000 .

[26]  K. Miyazono,et al.  Positive and negative regulation of TGF-beta signaling. , 2000, Journal of cell science.

[27]  J. Wrana,et al.  Smads as transcriptional co-modulators. , 2000, Current opinion in cell biology.

[28]  K. Miyazono TGF-β signaling by Smad proteins , 2000 .

[29]  K. Miyazono,et al.  c-Ski Acts as a Transcriptional Co-repressor in Transforming Growth Factor-β Signaling through Interaction with Smads* , 1999, The Journal of Biological Chemistry.

[30]  K. Luo,et al.  Negative Feedback Regulation of TGF-β Signaling by the SnoN Oncoprotein , 1999 .

[31]  S. Tsujitani,et al.  The expression of transforming growth factor‐β1 is significantly correlated with the expression of vascular endothelial growth factor and poor prognosis of patients with advanced gastric carcinoma , 1999, Cancer.

[32]  R. Weinberg,et al.  Interaction of the Ski Oncoprotein with Smad3 Regulates TGF-β Signaling , 1999 .

[33]  Qiang Zhou,et al.  The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. , 1999, Genes & development.

[34]  Jeffrey L. Wrana,et al.  A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation , 1999, Nature.

[35]  E. Sausville,et al.  Proteasome inhibitors: a novel class of potent and effective antitumor agents. , 1999, Cancer research.

[36]  Takeo Iwama,et al.  Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis , 1999, Oncogene.

[37]  M. Hochstrasser,et al.  Substrate Targeting in the Ubiquitin System , 1999, Cell.

[38]  S. Ishii,et al.  Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. , 1999, Genes & development.

[39]  K. Miyazono,et al.  Role of p300, a transcriptional coactivator, in signalling of TGF‐β , 1998, Genes to cells : devoted to molecular & cellular mechanisms.

[40]  R. Derynck,et al.  The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. , 1998, Genes & development.

[41]  T. Hunter,et al.  TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. , 1998, Genes & development.

[42]  T. Kakegawa,et al.  Treatment of superficial cancer of the esophagus: a summary of responses to a questionnaire on superficial cancer of the esophagus in Japan. , 1998, Surgery.

[43]  R. White,et al.  Tumor Suppressing Pathways , 1998, Cell.

[44]  Kohei Miyazono,et al.  TGF-β signalling from cell membrane to nucleus through SMAD proteins , 1997, Nature.

[45]  M. Imamura,et al.  Genetic alterations in patients with esophageal cancer with short- and long-term survival rates after curative esophagectomy. , 1997, Annals of surgery.

[46]  T. Musci,et al.  The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function , 1997, Current Biology.

[47]  Anita B. Roberts,et al.  Tumor suppressor activity of the TGF-β pathway in human cancers , 1996 .

[48]  Y. Matsuzawa,et al.  High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression. , 1996, Gastroenterology.

[49]  Scott E. Kern,et al.  DPC4, A Candidate Tumor Suppressor Gene at Human Chromosome 18q21.1 , 1996, Science.

[50]  K. Kinzler,et al.  Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. , 1995, Science.

[51]  A. Okamoto,et al.  Overexpression of human cyclin D1 reduces the transforming growth factor beta (TGF-beta) type II receptor and growth inhibition by TGF-beta 1 in an immortalized human esophageal epithelial cell line. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[52]  R. Dòmini [Physiopathology of hemodynamics of the esophageal venous plexus]. , 1968, Archivio italiano delle malattie dell'apparato digerente.

[53]  E. Vitte,et al.  The thoracic esophagus: sectional anatomy and radiosurgical applications , 2005, Surgical and Radiologic Anatomy.

[54]  T. Kuroki,et al.  Molecular and cellular features of esophageal cancer cells , 2005, Journal of Cancer Research and Clinical Oncology.

[55]  K. Sugimachi,et al.  The subepithelial extension of esophageal carcinoma for determining the resection margin during esophagectomy: a serial histopathologic investigation. , 2002, Surgery.

[56]  J. Massagué TGF-beta signal transduction. , 1998, Annual review of biochemistry.

[57]  K. Sugimachi,et al.  Recent advances in the diagnosis and surgical treatment of patients with carcinoma of the esophagus. , 1994, Journal of the American College of Surgeons.

[58]  M. Sporn,et al.  Transforming growth factor-,B: possible roles incarcinogenesis* , 1988 .