On the oscillation of the expected number of extreme points of a random set

[1]  H. Raynaud Sur L'enveloppe convexe des nuages de points aleatoires dans Rn . I , 1970, Journal of Applied Probability.

[2]  Convergence in mean of some characteristics of the convex hull , 1989, Advances in Applied Probability.

[3]  Richard A. Davis,et al.  The convex hull of a random sample in , 1987 .

[4]  K. Borgwardt The Simplex Method: A Probabilistic Analysis , 1986 .

[5]  Rex A. Dwyer Convex hulls of samples from spherically symmetric distributions , 1991, Discret. Appl. Math..

[6]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .

[7]  Piet Groeneboom,et al.  Limit theorems for convex hulls , 1988 .

[8]  E. Slud Distribution Inequalities for the Binomial Law , 1977 .

[9]  Luc Devroye,et al.  How to reduce the average complexity of convex hull finding algorithms , 1981 .

[10]  Rex A. Dwyer,et al.  Average-case analysis of algorithms for convex hulls and Voronoi diagrams , 1988 .

[11]  B. Efron The convex hull of a random set of points , 1965 .

[12]  W. Eddy The distribution of the convex hull of a Gaussian sample , 1980, Journal of Applied Probability.

[13]  W. Eddy,et al.  The convex hull of a spherically symmetric sample , 1981, Advances in Applied Probability.

[14]  Rolf Schneider,et al.  Random approximation of convex sets * , 1988 .

[15]  H. Carnal Die konvexe Hülle von n rotationssymmetrisch verteilten Punkten , 1970 .

[16]  Imre Bárány,et al.  CONVEX-BODIES, ECONOMIC CAP COVERINGS, RANDOM POLYTOPES , 1988 .

[17]  Michael Jünger,et al.  Computing the Convex Hull in the Euclidean Plane in Linear Expected Time , 1990, Applied Geometry And Discrete Mathematics.