Biomimetic light dilution using side-emitting optical fiber for enhancing the productivity of microalgae reactors

[1]  S. Nolte,et al.  Side-emission properties of femtosecond laser induced scattering centers in optical fibers , 2019, Optical Materials Express.

[2]  Ulrich S Schubert,et al.  Artificial Microbial Arenas: Materials for Observing and Manipulating Microbial Consortia , 2019, Advanced materials.

[3]  Kyoohyun Kim,et al.  Study of Optical Configurations for Multiple Enhancement of Microalgal Biomass Production , 2019, Scientific Reports.

[4]  Jianhua Zhu,et al.  High-value bioproducts from microalgae: Strategies and progress , 2018, Critical reviews in food science and nutrition.

[5]  G. Halder,et al.  Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review , 2018, Food and Bioproducts Processing.

[6]  L. Wondraczek,et al.  Light extraction from fundamental modes in modulated waveguides for homogeneous side-emission , 2018, Scientific Reports.

[7]  P. Westerhoff,et al.  Optical fiber-mediated photosynthesis for enhanced subsurface oxygen delivery. , 2018, Chemosphere.

[8]  Yun Huang,et al.  A novel biofilm photobioreactor using light guide plate enhances the hydrogen production , 2017 .

[9]  D. Nelson,et al.  Intracellular spectral recompositioning of light enhances algal photosynthetic efficiency , 2017, Science Advances.

[10]  Duu-Jong Lee,et al.  Microalgae biorefinery: High value products perspectives. , 2017, Bioresource technology.

[11]  David Sinton,et al.  Photon management for augmented photosynthesis , 2016, Nature Communications.

[12]  J. Liao,et al.  Fuelling the future: microbial engineering for the production of sustainable biofuels , 2016, Nature Reviews Microbiology.

[13]  J. Méndez‐Ramos,et al.  Shifting the Sun: Solar Spectral Conversion and Extrinsic Sensitization in Natural and Artificial Photosynthesis , 2015, Advanced science.

[14]  M. Heining,et al.  Photobioreactors with internal illumination - A survey and comparison. , 2015, Biotechnology journal.

[15]  Lothar Wondraczek,et al.  Large area, low cost anti-reflective coating for solar glasses , 2014 .

[16]  Jason C. Quinn,et al.  Global evaluation of biofuel potential from microalgae , 2014, Proceedings of the National Academy of Sciences.

[17]  Bingtao Zhao,et al.  Process effect of microalgal-carbon dioxide fixation and biomass production: A review , 2014 .

[18]  C. Brabec,et al.  Solar spectral conversion for improving the photosynthetic activity in algae reactors , 2013, Nature Communications.

[19]  W. Cong,et al.  A novel photobioreactor structure using optical fibers as inner light source to fulfill flashing light effects of microalgae. , 2013, Bioresource technology.

[20]  A. Idris,et al.  The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. , 2013, Bioresource technology.

[21]  M. Borowitzka High-value products from microalgae—their development and commercialisation , 2013, Journal of Applied Phycology.

[22]  S. Mayfield,et al.  Exploiting diversity and synthetic biology for the production of algal biofuels , 2012, Nature.

[23]  Duu-Jong Lee,et al.  Enhancement of photo-hydrogen production in a biofilm photobioreactor using optical fiber with additional rough surface. , 2011, Bioresource technology.

[24]  James Barber,et al.  Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement , 2011, Science.

[25]  R. Wijffels,et al.  An Outlook on Microalgal Biofuels , 2010, Science.

[26]  Jean-François Cornet,et al.  Calculation of Optimal Design and Ideal Productivities of Volumetrically-Lightened Photobioreactors using the Constructal Approach , 2010, 2011.03781.

[27]  René H. Wijffels,et al.  Design Process of an Area-Efficient Photobioreactor , 2008, Marine Biotechnology.

[28]  Jo‐Shu Chang,et al.  Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3–5 using optical fiber-illuminating photobioreactors , 2006 .

[29]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[30]  P. Spolaore,et al.  Commercial applications of microalgae. , 2006, Journal of bioscience and bioengineering.

[31]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[32]  Joanna Aizenberg,et al.  Biological glass fibers: correlation between optical and structural properties. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Miguel Olaizola,et al.  Haematococcus astaxanthin: applications for human health and nutrition. , 2003, Trends in biotechnology.

[34]  Johannes Tramper,et al.  Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. , 2003, Biotechnology and bioengineering.

[35]  Jeffrey M. Gordon,et al.  Tailoring optical systems to optimized photobioreactors , 2002 .

[36]  O. Pulz,et al.  Photobioreactors: production systems for phototrophic microorganisms , 2001, Applied Microbiology and Biotechnology.

[37]  Clemens Posten,et al.  Light distribution in a novel photobioreactor – modelling for optimization , 2001, Journal of Applied Phycology.

[38]  René H. Wijffels,et al.  Scale-up aspects of photobioreactors: effects of mixing-induced light/dark cycles , 2000, Journal of Applied Phycology.

[39]  K Maxwell,et al.  Chlorophyll fluorescence--a practical guide. , 2000, Journal of experimental botany.

[40]  M. Borowitzka Commercial production of microalgae: ponds, tanks, tubes and fermenters , 1999 .

[41]  J. Ogbonna,et al.  An integrated solar and artificial light system for internal illumination of photobioreactors. , 1999, Journal of biotechnology.

[42]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[43]  T. Matsunaga,et al.  Enhanced hydrogen production by a marine photosynthetic bacterium, Rhodobacter marinus, immobilized onto light-diffusing optical fibers , 1996 .

[44]  T. Matsunaga,et al.  An optical fibre photobioreactor for enhanced production of the marine unicellular alga Isochrysis aff. galbana T-Iso (UTEX LB 2307) rich in docosahexaenoic acid , 1993, Applied Microbiology and Biotechnology.

[45]  Richard C. Starr,et al.  UTEX—THE CULTURE COLLECTION OF ALGAE AT THE UNIVERSITY OF TEXAS AT AUSTIN 1993 LIST OF CULTURES 1 , 1993 .

[46]  T. Matsunaga,et al.  Glutamate production from CO2 by marine cyanobacterium Synechococcus sp. using a novel biosolar reactor employing light-diffusing optical fibers , 1991 .

[47]  K. Mori,et al.  Photoautotrophic bioreactor using visible solar rays condensed by fresnel lenses and transmitted through optical fibers , 1986 .

[48]  Dietrich Marcuse,et al.  Principles of Optical Fiber Measurements , 1981 .

[49]  R. C. Macridis A review , 1963 .

[50]  D. Sinton,et al.  Emerging microalgae technology: a review , 2018 .

[51]  Kai Yin,et al.  Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. , 2011, Molecular nutrition & food research.

[52]  José M. Baptista,et al.  Light requirements in microalgal photobioreactors: an overview of biophotonic aspects , 2010, Applied Microbiology and Biotechnology.

[53]  Kristina M. Weyer,et al.  Theoretical Maximum Algal Oil Production , 2009, BioEnergy Research.

[54]  Dietrich Marcuse,et al.  5 – Loss Measurements , 1981 .