Nonlinear least-squares spline fitting with variable knots

[1]  Erkan Ülker,et al.  B-spline curve fitting with invasive weed optimization , 2017 .

[2]  G. Maccaferri,et al.  Firing pattern of O-LM cells in mouse hippocampal CA1 , 2016 .

[3]  Nan Chen,et al.  Adaptive B-spline knot selection using multi-resolution basis set , 2013 .

[4]  G. Maccaferri,et al.  Novel GABAergic Circuits Mediating Excitation/Inhibition of Cajal-Retzius Cells in the Developing Hippocampus , 2013, The Journal of Neuroscience.

[5]  James G. Nagy,et al.  Constrained numerical optimization methods for blind deconvolution , 2013, Numerical Algorithms.

[6]  Dianne P. O'Leary,et al.  Variable projection for nonlinear least squares problems , 2012, Computational Optimization and Applications.

[7]  James G. Nagy,et al.  An Efficient Iterative Approach for Large-Scale Separable Nonlinear Inverse Problems , 2009, SIAM J. Sci. Comput..

[8]  Gene H. Golub,et al.  The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate , 1972, Milestones in Matrix Computation.

[9]  Philip de Chazal,et al.  Automatic classification of heartbeats using ECG morphology and heartbeat interval features , 2004, IEEE Transactions on Biomedical Engineering.

[10]  Nicolas Molinari,et al.  Bounded optimal knots for regression splines , 2004, Comput. Stat. Data Anal..

[11]  Gleb Beliakov,et al.  Least squares splines with free knots: global optimization approach , 2004, Appl. Math. Comput..

[12]  Toshinobu Harada,et al.  Data fitting with a spline using a real-coded genetic algorithm , 2003, Comput. Aided Des..

[13]  G. Golub,et al.  Separable nonlinear least squares: the variable projection method and its applications , 2003 .

[14]  James A. Cadzow Minimum l1, l2, and l∞ Norm Approximate Solutions to an Overdetermined System of Linear Equations , 2002, Digit. Signal Process..

[15]  Carlos F. Borges,et al.  Total least squares fitting of Bézier and B-spline curves to ordered data , 2002, Comput. Aided Geom. Des..

[16]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[17]  Mary J. Lindstrom,et al.  Penalized Estimation of Free-Knot Splines , 1999 .

[18]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[19]  G. Stewart Afternotes goes to graduate school : lectures on advanced numerical analysis : a series of lectures on advanced numerical analysis presented at the University of Maryland at College Park and recorded after the fact , 1998 .

[20]  Marta Karczewicz,et al.  ECG data compression by spline approximation , 1997, Signal Process..

[21]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[22]  Leonid P. Lebedev,et al.  Approximation in a Normed Linear Space , 1996 .

[23]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[24]  G. Watson Approximation theory and numerical methods , 1980 .

[25]  D. Jupp Approximation to Data by Splines with Free Knots , 1978 .

[26]  David L.B. Jupp,et al.  The “Lethargy” theorem—A property of approximation by γ-polynomials , 1975 .

[27]  L. Kaufman A variable projection method for solving separable nonlinear least squares problems , 1974 .

[28]  V. Pereyra,et al.  Least Squares Estimation for a Class of Non-Linear Models , 1973 .

[29]  E. A. Sylvestre,et al.  Elimination of Linear Parameters in Nonlinear Regression , 1971 .

[30]  I. J. Schoenberg,et al.  On Pólya frequency functions IV: The fundamental spline functions and their limits , 1966 .

[31]  I. P. Natanson Constructive function theory , 1964 .

[32]  I. J. Schoenberg,et al.  ON POLYA FREQUENCY FUNCTIONS. III. THE POSITIVITY OF TRANSLATION DETERMINANTS WITH AN APPLICATION TO THE INTERPOLATION PROBLEM BY SPLINE CURVES( , 1953 .