Signal Processing in Radar Systems
暂无分享,去创建一个
Introduction Part I Design of Radar Digital Signal Processing and Control Algorithms Principles of Systems Approach to Design Complex Radar Systems Methodology of Systems Approach Main Requirements to Complex Radar Systems Problems of System Design for Automated Complex Radar Systems Radar Signal Processing System as an Object of Design Signal Processing by Digital Generalized Detector in Complex Radar Systems Analog to Digital Signal Conversion: Main Principles Digital Generalized Detector for Coherent Impulse Signals Convolution in Time Domain Convolution in Frequency Domain Examples of Some DGD Types Digital Interperiod Signal Processing Algorithms Digital Moving-Target Indication Algorithms DGD for Coherent Impulse Signals with Known Parameters DGD for Coherent Impulse Signals with Unknown Parameters Digital Measurers of Target Return Signal Parameters Complex Generalized Algorithms of Digital Interperiod Signal Processing Algorithms of Target Range Track Detection and Tracking Main Stages and Signal Reprocessing Operations Target Range Track Detection Using Surveillance Radar Data Target Range Tracking Using Surveillance Radar Data Filtering and Extrapolation of Target Track Parameters Based on Radar Measure Initial Conditions Process Representation in Filtering Subsystems Statistical Approach to Solution of Filtering Problems of Stochastic (Unknown) Parameters Algorithms of Linear Filtering and Extrapolation under Fixed Sample Size of Measurements Recurrent Filtering Algorithms of Undistorted Polynomial Target Track Parameters Adaptive Filtering Algorithms of Maneuvering Target Track Parameters Logical Flowchart of Complex Radar Signal Reprocessing Algorithm Principles of Control Algorithm Design for Complex Radar System Functioning at Dynamical Mode Configuration and Flowchart of Radar Control Subsystem Direct Control of Complex Radar Subsystem Parameters Scan Control in New Target Searching Mode Power Resource Control under Target Tracking Distribution of Power Resources of Complex Radar System under Combination of Target Searching and Target Tracking Modes Part II Design Principles of Computer System for Radar Digital Signal Processing and Control Algorithms Design Principles of Complex Algorithm Computational Process in Radar Systems Design Considerations Complex Algorithm Assignment Evaluation of Work Content of Complex Digital Signal Processing Algorithm Realization by Microprocessor Subsystems Paralleling of Computational Process Design Principles of Digital Signal Processing Subsystems Employed by Complex Radar System Structure and Main Engineering Data of Digital Signal Processing Subsystems Requirements for Effective Speed of Operation Requirements for RAM Size and Structure Selection of Microprocessor for Designing the Microprocessor Subsystems Structure and Elements of Digital Signal Processing and Complex Radar System Control Microprocessor Subsystems High-Performance Centralized Microprocessor Subsystem for Digital Signal Processing of Target Return Signals in Complex Radar Systems Programmable Microprocessor for Digital Signal Preprocessing of Target Return Signals in Complex Radar Systems Digital Signal Processing Subsystem Design (Example) General Statements Design of Digital Signal Processing and Control Subsystem Structure Structure of Coherent Signal Preprocessing Microprocessor Subsystem Structure of Noncoherent Signal Preprocessing Microprocessor Subsystem Signal Reprocessing Microprocessor Subsystem Specifications Structure of Digital Signal Processing Subsystem Global Digital Signal Processing System Analysis Digital Signal Processing System Design Analysis of "n - 1 - 1" MTI System Analysis of "n - n - 1" MTI System Analysis of "n - m - 1" MTI System Comparative Analysis of Target Tracking Systems Part III Stochastic Processes Measuring in Radar Systems Main Statements of Statistical Estimation Theory Main Definitions and Problem Statement Point Estimate and Its Properties Effective Estimations Loss Function and Average Risk Bayesian Estimates for Various Loss Functions Estimation of Mathematical Expectation Conditional Functional Maximum Likelihood Estimate of Mathematical Expectation Bayesian Estimate of Mathematical Expectation: Quadratic Loss Function Applied Approaches to Estimate the Mathematical Expectation Estimate of Mathematical Expectation at Stochastic Process Sampling Mathematical Expectation Estimate under Stochastic Process Amplitude Quantization Optimal Estimate of Varying Mathematical Expectation of Gaussian Stochastic Process Varying Mathematical Expectation Estimate under Stochastic Process Averaging in Time Estimate of Mathematical Expectation by Iterative Methods Estimate of Mathematical Expectation with Unknown Period Estimation of Stochastic Process Variance Optimal Variance Estimate of Gaussian Stochastic Process Stochastic Process Variance Estimate under Averaging in Time Errors under Stochastic Process Variance Estimate Estimate of Time-Varying Stochastic Process Variance Measurement of Stochastic Process Variance in Noise Estimation of Probability Distribution and Density Functions of Stochastic Process Main Estimation Regularities Characteristics of Probability Distribution Function Estimate Variance of Probability Distribution Function Estimate Characteristics of the Probability Density Function Estimate Probability Density Function Estimate Based on Expansion in Series Coefficient Estimations Measurers of Probability Distribution and Density Functions: Design Principles Estimate of Stochastic Process Frequency-Time Parameters Estimate of Correlation Function Correlation Function Estimation Based on its Expansion in Series Optimal Estimation of Gaussian Stochastic Process Correlation Function Parameter Correlation Function Estimation Methods Based on Other Principles Spectral Density Estimate of Stationary Stochastic Process Estimate of Stochastic Process Spike Parameters Mean-Square Frequency Estimate of Spectral Density Notation Index Index Chapters include a summary and discussion as well as references.