Discretisation of diffusive fluxes on hybrid grids
暂无分享,去创建一个
[1] Daniil Svyatskiy,et al. Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes , 2009, J. Comput. Phys..
[2] Pierre Moinier,et al. Edge-Based Multigrid and Preconditioning for Hybrid Grids , 1999 .
[3] Chi-Wang Shu,et al. TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .
[4] L. Fezoui,et al. A class of implicit upwind schemes for Euler simulations with unstructured meshes , 1989 .
[5] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[6] James J. McGuirk,et al. Finite Volume Discretization Aspects for Viscous Flows on Mixed Unstructured Grids , 1999 .
[7] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[8] Mengping Zhang,et al. AN ANALYSIS OF THREE DIFFERENT FORMULATIONS OF THE DISCONTINUOUS GALERKIN METHOD FOR DIFFUSION EQUATIONS , 2003 .
[9] T. Barth. Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations , 1994 .
[10] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[11] Martin Galle. Unstructured viscous flow solution using adaptive hybrid grids , 1995 .
[12] B. V. Leer,et al. Towards the Ultimate Conservative Difference Scheme , 1997 .
[13] Claus-Dieter Munz,et al. An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations , 2008, J. Comput. Phys..
[14] Dartzi Pan,et al. Upwind finite-volume Navier-Stokes computations on unstructured triangular meshes , 1993 .
[15] K. Morton,et al. Cell vertex algorithms for the compressible Navier-Stokes equations , 1993 .
[16] Jérôme Breil,et al. A cell-centered diffusion scheme on two-dimensional unstructured meshes , 2007, J. Comput. Phys..
[17] Brian Launder,et al. Numerical methods in laminar and turbulent flow , 1983 .
[18] G Geymonat. Partial Differential Equations of Hyperbolic Type and Applications , 1987 .
[19] W. Coirier. An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations. Ph.D. Thesis - Michigan Univ. , 1994 .
[20] Chi-Wang Shu,et al. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .
[21] V. Venkatakrishnan,et al. A UNIFIED MULTIGRID SOLVER FOR THE NAVIER-STOKES EQUATIONS ON MIXED ELEMENT MESHES , 1995 .
[22] Philip C. E. Jorgenson,et al. A mixed volume grid approach for the Euler and Navier-Stokes equations , 1996 .
[23] D. Schwamborn,et al. The DLR-F5 Wing Test Case, Contribution to "EUROVAL - An European Initiative on Validation of CFD Codes" , 1993 .
[24] Claus-Dieter Munz,et al. A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes , 2007, J. Comput. Phys..
[25] W. H. Reed,et al. Triangular mesh methods for the neutron transport equation , 1973 .
[26] Michael Rudgyard,et al. Steady and Unsteady Flow Simulations Using the Hybrid Flow Solver AVBP , 1999 .
[27] Sukumar Chakravarthy,et al. A 'grid-transparent' methodology for CFD , 1997 .
[28] Jacques Periaux,et al. Recent improvements in galerkin and upwind Euler solvers and application to 3-D transonic flow in aircraft design , 1989 .
[29] Valérie Auffray. Étude comparative de schémas numériques pour la modélisation de phénomènes diffusifs sur maillages multiéléments , 2007 .
[30] Bram Van Leer,et al. Discontinuous Galerkin for Diffusion , 2005 .
[31] A. Khawaja,et al. Implementation of adaptive hybrid grids for 3-D turbulent flows , 1996 .
[32] Arthur Rizzi,et al. Reynolds Stress Transport Modeling of Transonic Flow Around the RAE2822 Airfoil , 1994 .
[33] Bijan Mohammadi,et al. Fluid dynamics computation with NSC2KE : an user-guide : release 1.0 , 1994 .
[34] R. Eymard,et al. Finite volume approximation of elliptic problems and convergence of an approximate gradient , 2001 .
[35] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[36] Alain Dervieux,et al. Steady Euler simulations using unstructured meshes , 1985 .
[37] Bijan Mohammadi,et al. COMPLEX TURBULENT COMPRESSIBLE FLOW COMPUTATION USING A TWO-LAYER APPROACH , 1992 .