Observation of a Strong Decoupling Phenomenon in Pt/Si Hybrid Structures for In-Plane Thermoelectric Properties

[1]  Zihang Liu,et al.  Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling , 2022, Nature communications.

[2]  M. Seong,et al.  Interface-Induced Seebeck Effect in PtSe2/PtSe2 van der Waals Homostructures. , 2022, ACS nano.

[3]  D. Narducci,et al.  Exceptional thermoelectric power factors in hyperdoped, fully dehydrogenated nanocrystalline silicon thin films , 2021, Applied Physics Letters.

[4]  Zhiyu Hu,et al.  Thermoelectric converter: Strategies from materials to device application , 2021, Nano Energy.

[5]  M. Kanatzidis,et al.  Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal , 2021, Nature Materials.

[6]  Akanksha K. Menon,et al.  Decoupling electron and phonon transport in single-nanowire hybrid materials for high-performance thermoelectrics , 2021, Science Advances.

[7]  Y. Miura,et al.  Seebeck-driven transverse thermoelectric generation , 2021, Nature Materials.

[8]  Shi-Li Zhang,et al.  High thermoelectric power factor of p-type amorphous silicon thin films dispersed with ultrafine silicon nanocrystals , 2020 .

[9]  S. Ullah,et al.  Thermoelectric performance of a metastable thin-film Heusler alloy , 2019, Nature.

[10]  D. Vashaee,et al.  Paramagnon drag in high thermoelectric figure of merit Li-doped MnTe , 2019, Science Advances.

[11]  Jun Jiang,et al.  Enhanced thermoelectric performance through crystal field engineering in transition metal–doped GeTe , 2019, Materials Today Physics.

[12]  R. Mitdank,et al.  Absolute Seebeck coefficient of thin platinum films , 2019, Journal of Applied Physics.

[13]  T. Mori Novel Principles and Nanostructuring Methods for Enhanced Thermoelectrics. , 2017, Small.

[14]  J. E. Lee,et al.  Achieving ZT=2.2 with Bi-doped n-type SnSe single crystals , 2016, Nature Communications.

[15]  Y. Ding,et al.  Anisotropic electrical and lattice transport properties of ordered quaternary phases Cr2TiAlC2 and Mo2TiAlC2: A first principles study , 2016 .

[16]  Yufeng Zhang,et al.  Graphene oxide aerogel-supported Pt electrocatalysts for methanol oxidation , 2015 .

[17]  G. J. Snyder,et al.  Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics , 2015, Science.

[18]  O. Conde,et al.  Very high thermoelectric power factor in a Fe3O4/SiO2/p-type Si(100)heterostructure , 2014, 1406.2814.

[19]  Deyu Li,et al.  Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces. , 2012, Nature nanotechnology.

[20]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[21]  Ravi Mahajan,et al.  On-chip cooling by superlattice-based thin-film thermoelectrics. , 2009, Nature nanotechnology.

[22]  Hideo Hosono,et al.  Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. , 2007, Nature materials.

[23]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[24]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[25]  R. Wilson Vacuum thermionic work functions of polycrystalline Be, Ti, Cr, Fe, Ni, Cu, Pt, and type 304 stainless steel. , 1966 .

[26]  X. Bao,et al.  Interface-enhanced thermoelectric output power in CrN/SrTiO3−x heterostructure , 2022 .