Symplectic structure of statistical variational data assimilation

Data assimilation variational principles (4D-Var) exhibit a natural symplectic structure among the state variables x(t) and x(t). We explore the implications of this structure in both Lagrangian coordinates {x(t),x(t)} and Hamiltonian canonical coordinates {x(t),p(t)} through a numerical examination of the chaotic Lorenz 1996 model in ten dimensions. We find that there are a number of subtleties associated with discretization, boundary conditions, and symplecticity, suggesting differing approaches when working in the the Lagrangian versus the Hamiltonian description. We investigate these differences in detail, and accordingly develop a protocol for searching for optimal trajectories in a Hamiltonian space. We find that casting the problem into canonical coordinates can, in some situations, considerably improve the quality of predictions.

[1]  J. Bröcker On variational data assimilation in continuous time , 2010 .

[2]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[3]  Henry D. I. Abarbanel,et al.  Predicting the Future: Completing Models of Observed Complex Systems , 2013 .

[4]  Henry D. I. Abarbanel,et al.  Predicting the Future , 2013 .

[5]  Olivier Talagrand,et al.  On extending the limits of variational assimilation in nonlinear chaotic systems , 1996 .

[6]  Jesús María Sanz-Serna,et al.  Symplectic Runge-Kutta Schemes for Adjoint Equations, Automatic Differentiation, Optimal Control, and More , 2015, SIAM Rev..

[7]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[8]  J. C. Quinn,et al.  Systematic variational method for statistical nonlinear state and parameter estimation. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  S. Lall,et al.  Discrete variational Hamiltonian mechanics , 2006 .

[10]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[11]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[12]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[13]  The structure of /spl Omega/-matrix in nonlinear filters , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[14]  Andrew F. Bennett,et al.  An inverse ocean modeling system , 2001 .

[15]  A. Simmons,et al.  The ECMWF operational implementation of four‐dimensional variational assimilation. I: Experimental results with simplified physics , 2007 .

[16]  Y. Trémolet Accounting for an imperfect model in 4D‐Var , 2006 .

[17]  J. C. Quinn,et al.  Improved variational methods in statistical data assimilation , 2015 .

[18]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[19]  Jochen Brocker,et al.  Sensitivity and out‐of‐sample error in continuous time data assimilation , 2011, 1108.5756.

[20]  Monique Chyba,et al.  The role of symplectic integrators in optimal control , 2009 .

[21]  Dacian N. Daescu,et al.  The Impact of Background Error on Incomplete Observations for 4D-Var Data Assimilation with the FSU GSM , 2005, International Conference on Computational Science.

[22]  J. Marsden,et al.  Mechanical integrators derived from a discrete variational principle , 1997 .

[23]  Melvin Leok,et al.  Discrete Hamiltonian Variational Integrators , 2010, 1001.1408.

[24]  Geir Evensen,et al.  Advanced Data Assimilation for Strongly Nonlinear Dynamics , 1997 .

[25]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[26]  E. Kalnay,et al.  C ○ 2007 The Authors , 2006 .

[27]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[28]  W. Zhong,et al.  Symplectic adaptive algorithm for solving nonlinear two-point boundary value problems in Astrodynamics , 2011 .

[29]  Andrew F. Bennett,et al.  Inverse Methods in Physical Oceanography: Frontmatter , 1992 .

[30]  Colin J. Cotter,et al.  Probabilistic Forecasting and Bayesian Data Assimilation , 2015 .