Truly Subquadratic Exact Distance Oracles with Constant Query Time for Planar Graphs

Given an undirected, unweighted planar graph $G$ with $n$ vertices, we present a truly subquadratic size distance oracle for reporting exact shortest-path distances between any pair of vertices of $G$ in constant time. For any $\varepsilon > 0$, our distance oracle takes up $O(n^{5/3+\varepsilon})$ space and is capable of answering shortest-path distance queries exactly for any pair of vertices of $G$ in worst-case time $O(\log (1/\varepsilon))$. Previously no truly sub-quadratic size distance oracles with constant query time for answering exact all-pairs shortest paths distance queries existed.

[1]  Satish Rao,et al.  Planar graphs, negative weight edges, shortest paths, and near linear time , 2006, J. Comput. Syst. Sci..

[2]  Sergio Cabello,et al.  Many Distances in Planar Graphs , 2006, SODA '06.

[3]  Qian-Ping Gu,et al.  Constant Query Time $(1 + ε)$-Approximate Distance Oracle for Planar Graphs , 2019, Theor. Comput. Sci..

[4]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[5]  Michiel H. M. Smid,et al.  Planar Spanners and Approximate Shortest Path Queries among Obstacles in the Plane , 1996, ESA.

[6]  Timothy M. Chan,et al.  Faster Approximate Diameter and Distance Oracles in Planar Graphs , 2017, ESA.

[7]  Pawel Gawrychowski,et al.  Near-Optimal Compression for the Planar Graph Metric , 2017, SODA.

[8]  Christian Wulff-Nilsen Constant time distance queries in planar unweighted graphs with subquadratic preprocessing time , 2013, Comput. Geom..

[9]  Sergio Cabello,et al.  Subquadratic Algorithms for the Diameter and the Sum of Pairwise Distances in Planar Graphs , 2017, SODA.

[10]  Christian Wulff-Nilsen,et al.  Better Tradeoffs for Exact Distance Oracles in Planar Graphs , 2017, SODA.

[11]  Philip N. Klein,et al.  Structured recursive separator decompositions for planar graphs in linear time , 2012, STOC '13.

[12]  Christian Wulff-Nilsen,et al.  Approximate Distance Oracles for Planar Graphs with Improved Query Time-Space Tradeoff , 2016, SODA.

[13]  Hristo Djidjev,et al.  On-Line Algorithms for Shortest Path Problems on Planar Digraphs , 1996, WG.

[14]  Christian Sommer,et al.  Exact distance oracles for planar graphs , 2010, SODA.

[15]  Jinhui Xu,et al.  Shortest path queries in planar graphs , 2000, STOC '00.

[16]  Panagiotis Charalampopoulos,et al.  Almost optimal distance oracles for planar graphs , 2018, STOC.

[17]  Qian-Ping Gu,et al.  Constant Query Time (1+\epsilon ) -Approximate Distance Oracle for Planar Graphs , 2015, ISAAC.

[18]  Christian Sommer,et al.  Shortest-path queries in static networks , 2014, ACM Comput. Surv..

[19]  Christian Wulff-Nilsen,et al.  Fast and Compact Exact Distance Oracle for Planar Graphs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[20]  Merav Parter,et al.  Planar diameter via metric compression , 2019, STOC.

[21]  Ken-ichi Kawarabayashi,et al.  Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus and Minor-Free Graphs , 2011, ICALP.

[22]  Timothy M. Chan All-pairs shortest paths for unweighted undirected graphs in o(mn) time , 2012, TALG.

[23]  Mikkel Thorup Compact oracles for reachability and approximate distances in planar digraphs , 2004, JACM.

[24]  Philip N. Klein,et al.  Preprocessing an undirected planar network to enable fast approximate distance queries , 2002, SODA '02.

[25]  Mihai Patrascu,et al.  Distance Oracles beyond the Thorup-Zwick Bound , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[26]  Yahav Nussbaum,et al.  Improved Distance Queries in Planar Graphs , 2010, WADS.