The universal Cannon--Thurston maps and the boundary of the curve complex

In genus two and higher, the fundamental group of a closed surface acts naturally on the curve complex of the surface with one puncture. Combining ideas from previous work of Kent--Leininger--Schleimer and Mitra, we construct a universal Cannon--Thurston map from a subset of the circle at infinity for the closed surface group onto the boundary of the curve complex of the once-punctured surface. Using the techniques we have developed, we also show that the boundary of this curve complex is locally path-connected.

[1]  James Eells,et al.  A fibre bundle description of Teichmüller theory , 1969 .

[2]  J. Birman Mapping class groups and their relationship to braid groups , 1969 .

[3]  J. Birman Braids, Links, and Mapping Class Groups. , 1975 .

[4]  W. Thurston The geometry and topology of 3-manifolds , 1979 .

[5]  John H. Hubbard,et al.  Quadratic differentials and foliations , 1979 .

[6]  W. J. Harvey,et al.  Boundary Structure of The Modular Group , 1981 .

[7]  I. Kra On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces , 1981 .

[8]  Joan S. Birman,et al.  Geodesics with bounded intersection number on surfaces are sparsely distributed , 1985 .

[9]  F. Bonahon The geometry of Teichmüller space via geodesic currents , 1988 .

[10]  Steven A. Bleiler,et al.  Automorphisms of Surfaces after Nielsen and Thurston , 1988 .

[11]  J. D. McCarthy,et al.  Dynamics on Thurston’s sphere of projective measured foliations , 1989 .

[12]  J. Harer,et al.  Combinatorics of Train Tracks. , 1991 .

[13]  B. M. Fulk MATH , 1992 .

[14]  Y. Minsky Teichmüller geodesics and ends of hyperbolic 3-manifolds , 1993 .

[15]  Ending laminations for hyperbolic group extensions , 1997 .

[16]  A hyperbolic-by-hyperbolic hyperbolic group , 1997 .

[17]  Yair N. Minsky,et al.  Geometry of the complex of curves II: Hierarchical structure , 1998 .

[18]  M. Mitra Cannon-Thurston maps for hyperbolic group extensions , 1998 .

[19]  Amruth N. Kumar,et al.  Links , 1999, INTL.

[20]  Yair N. Minsky,et al.  Geometry of the complex of curves I: Hyperbolicity , 1998, math/9804098.

[21]  Jeffrey F. Brock Continuity of Thurston's length function , 2000 .

[22]  Convex cocompact subgroups of mapping class groups , 2001, math/0106190.

[23]  Cannon-Thurston Maps for Surface Groups I: Amalgamation Geometry and Split Geometry , 2005, math/0512539.

[24]  D. Kennedy 125 , 2005, Science.

[25]  Helse og omsorgsdepartementet I-6/2002 , 2006 .

[26]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[27]  S. Schleimer,et al.  Trees and mapping class groups , 2006, math/0611241.

[28]  V. Guirardel,et al.  Deformation spaces of trees , 2006, math/0605545.

[29]  Mahan Mj Cannon-Thurston Maps for Surface Groups , 2006, math/0607509.

[30]  Mahan Mj Cannon-Thurston Maps for Surface Groups II: Split Geometry and the Minsky Model , 2006 .

[31]  James W. Cannon,et al.  Group invariant Peano curves , 2007 .

[32]  David Gabai,et al.  Almost filling laminations and the connectivity of ending lamination space , 2008, 0808.2080.

[33]  Saul Schleimer,et al.  Connectivity of the space of ending laminations , 2008, 0801.3058.