In Situ Investigation of Chemomechanical Effects in Thiophosphate Solid Electrolytes

[1]  C. Yuan,et al.  Cell failures of all-solid-state lithium metal batteries with inorganic solid electrolytes: Lithium dendrites , 2020 .

[2]  P. Mukherjee,et al.  Synchrotron Imaging of Pore Formation in Li Metal Solid-State Batteries Aided by Machine Learning , 2020, ACS Applied Energy Materials.

[3]  Felix H. Richter,et al.  Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. , 2020, Chemical reviews.

[4]  G. Ceder,et al.  Electrodeposition and Mechanical Stability at Lithium-Solid Electrolyte Interface during Plating in Solid-State Batteries , 2020 .

[5]  Christos E. Athanasiou,et al.  High-Toughness Inorganic Solid Electrolytes via the Use of Reduced Graphene Oxide , 2020 .

[6]  J. Janek,et al.  The Fast Charge Transfer Kinetics of the Lithium Metal Anode on the Garnet‐Type Solid Electrolyte Li6.25Al0.25La3Zr2O12 , 2020, Advanced Energy Materials.

[7]  Y. Qi,et al.  Evaluation of The Electrochemo-Mechanically Induced Stress in All-Solid-State Li-Ion Batteries , 2020 .

[8]  B. Helms,et al.  Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries , 2020, Nature Materials.

[9]  J. Janek,et al.  Gas Evolution in Lithium-Ion Batteries: Solid versus Liquid Electrolyte. , 2020, ACS applied materials & interfaces.

[10]  Asma Sharafi,et al.  Li Penetration in Ceramic Solid Electrolytes: Operando Microscopy Analysis of Morphology, Propagation, and Reversibility , 2020, Matter.

[11]  S. Narayan,et al.  On Modeling the Detrimental Effects of Inhomogeneous Plating-and-Stripping at a Lithium-Metal/Solid-Electrolyte Interface in a Solid-State-Battery , 2020 .

[12]  Lauren E. Marbella,et al.  Challenges in Lithium Metal Anodes for Solid-State Batteries , 2020 .

[13]  G. Ceder,et al.  An Analysis of Solid-State Electrodeposition-Induced Metal Plastic Flow and Predictions of Stress States in Solid Ionic Conductor Defects , 2020, Journal of The Electrochemical Society.

[14]  Wan-Yu Tsai,et al.  Nanoscale Mapping of Extrinsic Interfaces in Hybrid Solid Electrolytes , 2020 .

[15]  G. Ceder,et al.  Understanding interface stability in solid-state batteries , 2019, Nature Reviews Materials.

[16]  R. McMeeking,et al.  Dendritic cracking in solid electrolytes driven by lithium insertion , 2019 .

[17]  P. Mukherjee,et al.  Molar Volume Mismatch: A Malefactor for Irregular Metallic Electrodeposition with Solid Electrolytes , 2019, Journal of The Electrochemical Society.

[18]  Patrick Bonnick,et al.  A high performance all solid state lithium sulfur battery with lithium thiophosphate solid electrolyte , 2019, Journal of Materials Chemistry A.

[19]  Michael J. Wang,et al.  Characterizing the Li-Solid-Electrolyte Interface Dynamics as a Function of Stack Pressure and Current Density , 2019, Joule.

[20]  M. Islam,et al.  Fundamentals of inorganic solid-state electrolytes for batteries , 2019, Nature Materials.

[21]  P. Bruce,et al.  Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells , 2019, Nature Materials.

[22]  Francisco Javier Quintero Cortes,et al.  Visualizing Chemomechanical Degradation of a Solid-State Battery Electrolyte , 2019, ACS Energy Letters.

[23]  V. Thangadurai,et al.  Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook. , 2019, ACS applied materials & interfaces.

[24]  Parvin Adeli,et al.  Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution. , 2019, Angewandte Chemie.

[25]  Renjie Chen,et al.  Electro–Chemo–Mechanical Issues at the Interfaces in Solid‐State Lithium Metal Batteries , 2019, Advanced Functional Materials.

[26]  I. Manke,et al.  Practical Implications of Using a Solid Electrolyte in Batteries with a Sodium Anode: A Combined X‐Ray Tomography and Model‐Based Study , 2019, Energy Technology.

[27]  Patrick Degenaar,et al.  Micro-machinability and edge chipping mechanism studies on diamond micro-milling of monocrystalline silicon , 2019, Journal of Manufacturing Processes.

[28]  Francisco Javier Quintero Cortes,et al.  Interphase Morphology between a Solid-State Electrolyte and Lithium Controls Cell Failure , 2019, ACS Energy Letters.

[29]  Xianghui Xiao,et al.  Tortuosity Effects in Garnet-Type Li7La3Zr2O12 Solid Electrolytes. , 2019, ACS applied materials & interfaces.

[30]  Xiulin Fan,et al.  High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes , 2019, Nature Energy.

[31]  Xin-Bing Cheng,et al.  Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes , 2019, Chem.

[32]  N. Dasgupta,et al.  Lithium Mechanics: Roles of Strain Rate and Temperature and Implications for Lithium Metal Batteries , 2019, Journal of The Electrochemical Society.

[33]  Chunwen Sun,et al.  Effects of Fluorine Doping on Structural and Electrochemical Properties of Li6.25Ga0.25La3Zr2O12 as Electrolytes for Solid-State Lithium Batteries. , 2018, ACS applied materials & interfaces.

[34]  Dana B. Sulas,et al.  Toward All-Solid-State Lithium Batteries: Three-Dimensional Visualization of Lithium Migration in β-Li3PS4 Ceramic Electrolyte , 2018 .

[35]  R. Nuzzo,et al.  Understanding the Effect of Interlayers at the Thiophosphate Solid Electrolyte/Lithium Interface for All-Solid-State Li Batteries , 2018, Chemistry of Materials.

[36]  Yang Shen,et al.  High-Conductivity Argyrodite Li6PS5Cl Solid Electrolytes Prepared via Optimized Sintering Processes for All-Solid-State Lithium-Sulfur Batteries. , 2018, ACS applied materials & interfaces.

[37]  Lin Xu,et al.  Interfaces in Solid-State Lithium Batteries , 2018, Joule.

[38]  J. Janek,et al.  Gas Evolution in All-Solid-State Battery Cells , 2018, ACS Energy Letters.

[39]  A. Hayashi,et al.  Mechanical properties of sulfide glasses in all-solid-state batteries , 2018, Journal of the Ceramic Society of Japan.

[40]  J. Janek,et al.  Chemo-mechanical expansion of lithium electrode materials – on the route to mechanically optimized all-solid-state batteries , 2018 .

[41]  Danielle M. Butts,et al.  Sulfide Solid Electrolytes for Lithium Battery Applications , 2018, Advanced Energy Materials.

[42]  Bingbing Chen,et al.  Progress and prospect on failure mechanisms of solid-state lithium batteries , 2018, Journal of Power Sources.

[43]  Chunsheng Wang,et al.  Suppressing Li Dendrite Formation in Li2S‐P2S5 Solid Electrolyte by LiI Incorporation , 2018 .

[44]  Eleanor I. Gillette,et al.  Pascalammetry with operando microbattery probes: Sensing high stress in solid-state batteries , 2018, Science Advances.

[45]  P. Bruce,et al.  All-solid-state batteries and their remaining challenges , 2018 .

[46]  Xianghui Xiao,et al.  Effect of Pore Connectivity on Li Dendrite Propagation within LLZO Electrolytes Observed with Synchrotron X-ray Tomography , 2018 .

[47]  A. Hayashi,et al.  Mechanical Properties of Li2S–P2S5 Glasses with Lithium Halides and Application in All-Solid-State Batteries , 2018 .

[48]  Claire Villevieille,et al.  Do imaging techniques add real value to the development of better post-Li-ion batteries? , 2018 .

[49]  Asma Sharafi,et al.  Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte , 2017 .

[50]  Pallab Barai,et al.  Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies. , 2017, Physical chemistry chemical physics : PCCP.

[51]  Wolfgang G. Zeier,et al.  Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes , 2017 .

[52]  Y. Chiang,et al.  Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes , 2017 .

[53]  J. Sakamoto,et al.  Effect of Processing Conditions of 75Li2S-25P2S5 Solid Electrolyte on its DC Electrochemical Behavior , 2017 .

[54]  Yet-Ming Chiang,et al.  Compliant Yet Brittle Mechanical Behavior of Li2S–P2S5 Lithium‐Ion‐Conducting Solid Electrolyte , 2017 .

[55]  R. Raj,et al.  Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries , 2017 .

[56]  Asma Sharafi,et al.  Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via in Situ Electron Microscopy. , 2016, Nano letters.

[57]  J. Rupp,et al.  Interface‐Engineered All‐Solid‐State Li‐Ion Batteries Based on Garnet‐Type Fast Li+ Conductors , 2016 .

[58]  Chunsheng Wang,et al.  Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes , 2016 .

[59]  Wolfgang G. Zeier,et al.  Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode , 2016 .

[60]  Sebastian Wenzel,et al.  Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte , 2016 .

[61]  Asma Sharafi,et al.  Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density , 2016 .

[62]  A. Hayashi,et al.  Evaluation of mechanical properties of Na2S–P2S5 sulfide glass electrolytes , 2015 .

[63]  Yizhou Zhu,et al.  Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.

[64]  Joachim Sann,et al.  Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy , 2015 .

[65]  Rui Kun,et al.  高电导率F掺杂Li 7 La 3 Zr 2 O 12 石榴石结构固体电解质 , 2015 .

[66]  H. Chai On edge chipping in cylindrical surfaces , 2015 .

[67]  Lei Cheng,et al.  Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. , 2015, ACS applied materials & interfaces.

[68]  S. Ujiie,et al.  Conductivity of 70Li2S·30P2S5 glasses and glass–ceramics added with lithium halides , 2014 .

[69]  Francesco De Carlo,et al.  TomoPy: a framework for the analysis of synchrotron tomographic data , 2014, Optics & Photonics - Optical Engineering + Applications.

[70]  B. Lawn,et al.  Edge chipping and flexural resistance of monolithic ceramics. , 2013, Dental materials : official publication of the Academy of Dental Materials.

[71]  T. Leichtweiss,et al.  Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes , 2013 .

[72]  S. Ujiie,et al.  Preparation and ionic conductivity of (100−x)(0.8Li2S·0.2P2S5)·xLiI glass–ceramic electrolytes , 2013, Journal of Solid State Electrochemistry.

[73]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[74]  S. Ujiie,et al.  Structure, ionic conductivity and electrochemical stability of Li2S–P2S5–LiI glass and glass–ceramic electrolytes , 2012 .

[75]  C. Masquelier Solid electrolytes: Lithium ions on the fast track. , 2011, Nature materials.

[76]  K Lyons,et al.  Clinical trials in zirconia: a systematic review. , 2010, Journal of oral rehabilitation.

[77]  B. Münch,et al.  Stripe and ring artifact removal with combined wavelet--Fourier filtering. , 2009, Optics express.

[78]  Lorenz Holzer,et al.  Contradicting Geometrical Concepts in Pore Size Analysis Attained with Electron Microscopy and Mercury Intrusion , 2008 .

[79]  Chunsheng Lu,et al.  Scaling of fracture strength in ZnO: Effects of pore/grain-size interaction and porosity , 2004 .

[80]  S. Kanzaki,et al.  Microstructure and Mechanical Properties of Silicon Nitride Ceramics with Controlled Porosity , 2002 .

[81]  S. Wilkins,et al.  Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object , 2002, Journal of microscopy.

[82]  Yuqing Cao,et al.  Failure analysis of exit edges in ceramic machining using finite element analysis , 2001 .

[83]  J.-N. Chazalviel,et al.  Dendritic growth mechanisms in lithium/polymer cells , 1999 .

[84]  V. Palchik,et al.  The influence of grain size and porosity on crack initiation stress and critical flaw length in dolomites , 1997 .

[85]  T. Jow,et al.  Interface between solid anode and solid electrolyte-effect of pressure on Li/LiI(Al2O3) interface , 1983 .

[86]  G. Robert,et al.  Superionic conduction in Li2S - P2S5 - LiI - glasses , 1981 .

[87]  R. Armstrong,et al.  The breakdown of β-alumina ceramic electrolyte , 1974 .

[88]  S. C. Carniglia Working Model for Porosity Effects on the Uniaxial Strength of Ceramics , 1972 .

[89]  O. Borodin,et al.  Lithium Iodide as a Promising Electrolyte Additive for Lithium–Sulfur Batteries: Mechanisms of Performance Enhancement , 2015, Advanced materials.

[90]  B. Lawn,et al.  Edge chipping of brittle materials: effect of side-wall inclination and loading angle , 2007 .