Many T copies in H-free graphs

Abstract For two graphs T and H with no isolated vertices and for an integer n , let ex ( n , T , H ) denote the maximum possible number of copies of T in an H -free graph on n vertices. The study of this function when T = K 2 is a single edge is the main subject of extremal graph theory. In the present paper we investigate the general function, focusing on the cases of triangles, complete graphs, complete bipartite graphs and trees. These cases reveal several interesting phenomena. Three representative results are: (i) ex ( n , K 3 , C 5 ) ≤ ( 1 + o ( 1 ) ) 3 2 n 3 / 2 , (ii) For any fixed m , s ≥ 2 m − 2 and t ≥ ( s − 1 ) ! + 1 , ex ( n , K m , K s , t ) = Θ ( n m − ( m 2 ) / s ) , and (iii) For any two trees H and T , ex ( n , T , H ) = Θ ( n m ) where m = m ( T , H ) is an integer depending on H and T (its precise definition is given in Section 1 ). The first result improves (slightly) an estimate of Bollobas and Győri. The proofs combine combinatorial and probabilistic arguments with simple spectral techniques.

[1]  M. Schacht Extremal results for random discrete structures , 2016, 1603.00894.

[2]  M. A. Perles ON THE NUMBER OF SUBGRAPHS OF PRESCRIBED TYPE OF GRAPHS WITH A GIVEN NUMBER OF EDGES* , 2007 .

[3]  P. Erdos,et al.  On maximal paths and circuits of graphs , 1959 .

[4]  Alexandr V. Kostochka,et al.  On independent sets in hypergraphs , 2011, Random Struct. Algorithms.

[5]  Zoltán Füredi,et al.  On the Number of Edges of Quadrilateral-Free Graphs , 1996, J. Comb. Theory, Ser. B.

[6]  L. Moser,et al.  AN EXTREMAL PROBLEM IN GRAPH THEORY , 2001 .

[7]  S. Janson,et al.  Upper tails for subgraph counts in random graphs , 2004 .

[8]  Miklós Simonovits,et al.  On the maximal number of certain subgraphs inKr-free graphs , 1991, Graphs Comb..

[9]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[10]  P. Erdös,et al.  On the structure of linear graphs , 1946 .

[11]  W. T. Gowers,et al.  Combinatorial theorems in sparse random sets , 2010, 1011.4310.

[12]  W. G. Brown On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.

[13]  P. Erdös On the structure of linear graphs , 1946 .

[14]  V. Rödl,et al.  Threshold functions for Ramsey properties , 1995 .

[15]  Vojtech Rödl,et al.  Sharp Bounds For Some Multicolor Ramsey Numbers , 2005, Comb..

[16]  Noga Alon,et al.  Efficient Testing of Large Graphs , 2000, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[17]  F. Behrend On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1946, Proceedings of the National Academy of Sciences of the United States of America.

[18]  JE MET,et al.  Wiskundige Opgaven , 1892 .

[19]  N. Alon,et al.  Constructive lower bounds for off-diagonal Ramsey numbers , 2001 .

[20]  P. Erdös On an extremal problem in graph theory , 1970 .

[21]  D. Saxton,et al.  Hypergraph containers , 2012, 1204.6595.

[22]  Jan Hladký,et al.  On the number of pentagons in triangle-free graphs , 2013, J. Comb. Theory, Ser. A.

[23]  Alexandr V. Kostochka,et al.  Turán Problems and Shadows III: Expansions of Graphs , 2014, SIAM J. Discret. Math..

[24]  J. Sheehan,et al.  On the number of complete subgraphs contained in certain graphs , 1981, J. Comb. Theory, Ser. B.

[25]  P. Erdgs,et al.  ON MAXIMAL PATHS AND CIRCUITS OF GRAPHS , 2002 .

[26]  Béla Bollobás,et al.  Pentagons vs. triangles , 2008, Discret. Math..

[27]  B. Bollobás On complete subgraphs of different orders , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[29]  Tibor Szabó On the spectrum of projective norm-graphs , 2003, Inf. Process. Lett..

[30]  T. Lu ON K4-FREE SUBGRAPHS OF RANDOM GRAPHS , 1997 .

[31]  P. Erdös On extremal problems of graphs and generalized graphs , 1964 .

[32]  M. Simonovits,et al.  Cycles of even length in graphs , 1974 .

[33]  Jacob Fox,et al.  A new proof of the graph removal lemma , 2010, ArXiv.

[34]  Hao Li,et al.  The Maximum Number of Triangles in C2k+1-Free Graphs , 2012, Combinatorics, Probability and Computing.

[35]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[36]  R. Salem,et al.  On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Boris Bukh,et al.  A Bound on the Number of Edges in Graphs Without an Even Cycle , 2014, Combinatorics, Probability and Computing.

[38]  V. Nikiforov Graphs with many r‐cliques have large complete r‐partite subgraphs , 2007, math/0703554.

[39]  Felix Lazebnik,et al.  On Hypergraphs of Girth Five , 2003, Electron. J. Comb..

[40]  Benny Sudakov,et al.  Maximizing the Number of Independent Sets of a Fixed Size , 2015, Comb. Probab. Comput..

[41]  Zoltán Füredi,et al.  New Asymptotics for Bipartite Turán Numbers , 1996, J. Comb. Theory, Ser. A.

[42]  Noga Alon,et al.  Norm-Graphs: Variations and Applications , 1999, J. Comb. Theory, Ser. B.

[43]  Miklós Simonovits,et al.  Paul Erdős' Influence on Extremal Graph Theory , 2013, The Mathematics of Paul Erdős II.

[44]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.

[45]  Vojtech Rödl,et al.  Large triangle-free subgraphs in graphs withoutK4 , 1986, Graphs Comb..

[46]  Zoltán Füredi,et al.  On 3-uniform hypergraphs without a cycle of a given length , 2014, Discret. Appl. Math..

[47]  Andrzej Grzesik On the maximum number of five-cycles in a triangle-free graph , 2012, J. Comb. Theory, Ser. B.