A Framework for Structured Linearizations of Matrix Polynomials in Various Bases

We present a framework for the construction of linearizations for scalar and matrix polynomials based on dual bases which, in the case of orthogonal polynomials, can be described by the associated recurrence relations. The framework provides an extension of the classical linearization theory for polynomials expressed in nonmonomial bases and allows us to represent polynomials expressed in product families, that is, as a linear combination of elements of the form $\phi_i(\lambda) \psi_j(\lambda)$, where $\{ \phi_i(\lambda) \}$ and $\{ \psi_j(\lambda) \}$ can either be polynomial bases or polynomial families which satisfy some mild assumptions. We show that this general construction can be used for many different purposes. Among them, we show how to linearize sums of polynomials and rational functions expressed in different bases. As an example, this allows us to look for intersections of functions interpolated on different nodes without converting them to the same basis. We then provide some constructions ...

[1]  E. Antoniou,et al.  A new family of companion forms of polynomial matrices , 2004 .

[2]  T. Berger,et al.  Hamburger Beiträge zur Angewandten Mathematik Controllability of linear differential-algebraic systems-A survey , 2012 .

[3]  S. Barnett A companion matrix analogue for orthogonal polynomials , 1975 .

[4]  Froilán M. Dopico,et al.  Fiedler companion linearizations for rectangular matrix polynomials , 2012 .

[5]  Paul Van Dooren,et al.  Block Kronecker linearizations of matrix polynomials and their backward errors , 2017, Numerische Mathematik.

[6]  F. R. Gantmakher The Theory of Matrices , 1984 .

[7]  Rida T. Farouki,et al.  Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains , 2003, Comput. Aided Geom. Des..

[8]  Walter Gautschi The condition of Vandermonde-like matrices involving orthogonal polynomials☆ , 1983 .

[9]  P. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .

[10]  Dario Bini,et al.  Journal of Computational and Applied Mathematics Solving secular and polynomial equations: A multiprecision algorithm , 2022 .

[11]  Volker Mehrmann,et al.  Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[12]  Robert M. Corless,et al.  On a Generalized Companion Matrix Pencil for Matrix Polynomials Expressed in the Lagrange Basis , 2007 .

[13]  Fassbender Heike,et al.  A sparse linearization for Hermite interpolation matrixpolynomials , 2015 .

[14]  Jr. G. Forney,et al.  Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .

[15]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[16]  Nicholas J. Higham,et al.  Symmetric Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[17]  I. J. Good THE COLLEAGUE MATRIX, A CHEBYSHEV ANALOGUE OF THE COMPANION MATRIX , 1961 .

[18]  P. Dooren,et al.  An improved algorithm for the computation of Kronecker's canonical form of a singular pencil , 1988 .

[19]  Froilán M. Dopico,et al.  Spectral equivalence of matrix polynomials and the index sum theorem , 2014 .

[20]  P. Van Dooren,et al.  A pencil approach for embedding a polynomial matrix into a unimodular matrix , 1988 .

[21]  Froilán M. Dopico,et al.  Fiedler Companion Linearizations and the Recovery of Minimal Indices , 2010, SIAM J. Matrix Anal. Appl..

[22]  Joab R. Winkler,et al.  Structured matrix methods for CAGD: an application to computing the resultant of polynomials in the Bernstein basis , 2005, Numer. Linear Algebra Appl..

[23]  Volker Mehrmann,et al.  Numerical methods for palindromic eigenvalue problems: Computing the anti‐triangular Schur form , 2009, Numer. Linear Algebra Appl..

[24]  Javier Pérez,et al.  Constructing Strong Linearizations of Matrix Polynomials Expressed in Chebyshev Bases , 2017, SIAM J. Matrix Anal. Appl..

[25]  Gerald Farin,et al.  A History of Curves and Surfaces in CAGD , 2002, Handbook of Computer Aided Geometric Design.

[26]  K. Wong The eigenvalue problem λTx + Sx , 1974 .

[27]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[28]  P. Lancaster,et al.  Linearization of matrix polynomials expressed in polynomial bases , 2008 .

[29]  Miroslav Fiedler,et al.  A note on companion matrices , 2003 .