A Framework for Structured Linearizations of Matrix Polynomials in Various Bases
暂无分享,去创建一个
[1] E. Antoniou,et al. A new family of companion forms of polynomial matrices , 2004 .
[2] T. Berger,et al. Hamburger Beiträge zur Angewandten Mathematik Controllability of linear differential-algebraic systems-A survey , 2012 .
[3] S. Barnett. A companion matrix analogue for orthogonal polynomials , 1975 .
[4] Froilán M. Dopico,et al. Fiedler companion linearizations for rectangular matrix polynomials , 2012 .
[5] Paul Van Dooren,et al. Block Kronecker linearizations of matrix polynomials and their backward errors , 2017, Numerische Mathematik.
[6] F. R. Gantmakher. The Theory of Matrices , 1984 .
[7] Rida T. Farouki,et al. Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains , 2003, Comput. Aided Geom. Des..
[8] Walter Gautschi. The condition of Vandermonde-like matrices involving orthogonal polynomials☆ , 1983 .
[9] P. Dooren. The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .
[10] Dario Bini,et al. Journal of Computational and Applied Mathematics Solving secular and polynomial equations: A multiprecision algorithm , 2022 .
[11] Volker Mehrmann,et al. Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..
[12] Robert M. Corless,et al. On a Generalized Companion Matrix Pencil for Matrix Polynomials Expressed in the Lagrange Basis , 2007 .
[13] Fassbender Heike,et al. A sparse linearization for Hermite interpolation matrixpolynomials , 2015 .
[14] Jr. G. Forney,et al. Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .
[15] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[16] Nicholas J. Higham,et al. Symmetric Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..
[17] I. J. Good. THE COLLEAGUE MATRIX, A CHEBYSHEV ANALOGUE OF THE COMPANION MATRIX , 1961 .
[18] P. Dooren,et al. An improved algorithm for the computation of Kronecker's canonical form of a singular pencil , 1988 .
[19] Froilán M. Dopico,et al. Spectral equivalence of matrix polynomials and the index sum theorem , 2014 .
[20] P. Van Dooren,et al. A pencil approach for embedding a polynomial matrix into a unimodular matrix , 1988 .
[21] Froilán M. Dopico,et al. Fiedler Companion Linearizations and the Recovery of Minimal Indices , 2010, SIAM J. Matrix Anal. Appl..
[22] Joab R. Winkler,et al. Structured matrix methods for CAGD: an application to computing the resultant of polynomials in the Bernstein basis , 2005, Numer. Linear Algebra Appl..
[23] Volker Mehrmann,et al. Numerical methods for palindromic eigenvalue problems: Computing the anti‐triangular Schur form , 2009, Numer. Linear Algebra Appl..
[24] Javier Pérez,et al. Constructing Strong Linearizations of Matrix Polynomials Expressed in Chebyshev Bases , 2017, SIAM J. Matrix Anal. Appl..
[25] Gerald Farin,et al. A History of Curves and Surfaces in CAGD , 2002, Handbook of Computer Aided Geometric Design.
[26] K. Wong. The eigenvalue problem λTx + Sx , 1974 .
[27] Volker Mehrmann,et al. Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..
[28] P. Lancaster,et al. Linearization of matrix polynomials expressed in polynomial bases , 2008 .
[29] Miroslav Fiedler,et al. A note on companion matrices , 2003 .