A UNIFIED CONVERGENCE ANALYSIS FOR LOCAL PROJECTION STABILISATIONS APPLIED TO THE OSEEN PROBLEM

The recovery of distillate products from a hydrocracking process includes passing the liquid-phase portion of the reaction zone effluent into a stripping column. A naphtha sidecut stream is recovered off the stripping column and combined with the net overhead liquid of the column. These combined streams are then combined with the naphtha recovered from the primary product recovery column. This minimizes the hydrogen sulfide present in the total naphtha product.

[1]  Maxim A. Olshanskii,et al.  Stabilized finite element schemes with LBB-stable elements for incompressible flows , 2005 .

[2]  Douglas N. Arnold,et al.  Approximation by quadrilateral finite elements , 2000, Math. Comput..

[3]  Lutz Tobiska,et al.  Analysis of a new stabilized higher order finite element method for advection–diffusion equations , 2006 .

[4]  Roland Becker,et al.  Optimal control of the convection-diffusion equation using stabilized finite element methods , 2007, Numerische Mathematik.

[5]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[6]  R. Stenberg Analysis of mixed finite elements methods for the Stokes problem: a unified approach , 1984 .

[7]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[8]  Jean-Luc Guermond,et al.  Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers , 2006 .

[9]  Lutz Tobiska,et al.  Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations , 1996 .

[10]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[11]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[12]  Volker John,et al.  On large Eddy simulation and variational multiscale methods in the numerical simulation of turbulent incompressible flows , 2006 .

[13]  Gert Lube,et al.  RESIDUAL-BASED STABILIZED HIGHER-ORDER FEM FOR A GENERALIZED OSEEN PROBLEM , 2006 .

[14]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[15]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[16]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[17]  Giancarlo Sangalli,et al.  Variational Multiscale Analysis: the Fine-scale Green's Function, Projection, Optimization, Localization, and Stabilized Methods , 2007, SIAM J. Numer. Anal..

[18]  Jean-Luc Guermond,et al.  Subgrid stabilization of Galerkin approximations of linear monotone operators , 2001 .

[19]  Jean-Luc Guermond,et al.  Subgrid stabilization of Galerkin approximations of linear contraction semi-groups of class C0 , 1999 .

[20]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[21]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[22]  J. Guermond Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .

[23]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[24]  Volker John,et al.  A Finite Element Variational Multiscale Method for the Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..

[25]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[26]  Linda El Alaoui,et al.  Nonconforming finite element methods with subgrid viscosity applied to advection‐diffusion‐reaction equations , 2006 .

[27]  Thomas Richter,et al.  Solving Multidimensional Reactive Flow Problems with Adaptive Finite Elements , 2007 .

[28]  Gunar Matthies,et al.  Mapped Finite Elements on Hexahedra. Necessary and Sufficient Conditions for Optimal Interpolation Errors , 2001, Numerical Algorithms.

[29]  Béatrice Rivière,et al.  A two‐grid stabilization method for solving the steady‐state Navier‐Stokes equations , 2006 .

[30]  Roland Becker,et al.  A Two-Level Stabilization Scheme for the Navier-Stokes Equations , 2004 .

[31]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[32]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[33]  Gunar Matthies,et al.  The Inf-Sup Condition for the Mapped Qk−Pk−1disc Element in Arbitrary Space Dimensions , 2002, Computing.

[34]  G. Lube,et al.  STABILIZED FEM FOR INCOMPRESSIBLE FLOW. CRITICAL REVIEW AND NEW TRENDS , 2006 .

[35]  M. Stynes,et al.  Numerical methods for singularly perturbed differential equations : convection-diffusion and flow problems , 1996 .

[36]  Erik Burman,et al.  Stabilized finite element methods for the generalized Oseen problem , 2007 .

[37]  W. Layton,et al.  A two-level variational multiscale method for convection-dominated convection-diffusion equations , 2006 .

[38]  Jean-Luc Guermond,et al.  Subgrid stabilization of Galerkin approximations of linear contraction semi-groups of classC0 in Hilbert spaces , 2001 .

[39]  T. Richter,et al.  SOLUTIONS OF 3D NAVIER-STOKES BENCHMARK PROBLEMS WITH ADAPTIVE FINITE ELEMENTS , 2006 .

[40]  Malte Braack,et al.  Stabilized finite elements for 3D reactive flows , 2006 .