Molecular Cloud Evolution. I. Molecular Cloud and Thin Cold Neutral Medium Sheet Formation

We discuss molecular cloud formation by large-scale supersonic compressions in the diffuse warm neutral medium (WNM). Initially, a shocked layer forms, and within it, a thin cold layer. An analytical model and high-resolution one-dimensional simulations predict the thermodynamic conditions in the cold layer. After ~1 Myr of evolution, the layer has column density ~2.5 × 1019 cm-2, thickness ~0.03 pc, temperature ~25 K, and pressure ~6650 K cm-3. These conditions are strongly reminiscent of those recently reported by Heiles and coworkers for cold neutral medium sheets. In the one-dimensional simulations, the inflows into the sheets produce line profiles with a central line of width ~0.5 km s-1 and broad wings of width ~1 km s-1. Three-dimensional numerical simulations show that the cold layer develops turbulent motions and increases its thickness until it becomes a fully three-dimensional turbulent cloud. Fully developed turbulence arises on times ranging from ~7.5 Myr for inflow Mach number M1,r = 2.4 to >80 Myr for M1,r = 1.03. These numbers should be considered upper limits. The highest density turbulent gas (HDG, n > 100 cm-3) is always overpressured with respect to the mean WNM pressure by factors of 1.5-4, even though we do not include self-gravity. The intermediate-density gas (IDG, 10 < n/cm-3 < 100) has a significant pressure scatter that increases with M1,r, so that at M1,r = 2.4 a significant fraction of the IDG is at a higher pressure than the HDG. Our results suggest that the turbulence and at least part of the excess pressure in molecular clouds can be generated by the compressive process that forms the clouds themselves and that thin CNM sheets may be formed transiently by this mechanism, when the compressions are only weakly supersonic.

[1]  L. Hartmann,et al.  Formation of Structure in Molecular Clouds: A Case Study , 2005, astro-ph/0507567.

[2]  I. Bonnell,et al.  The onset of collapse in turbulently supported molecular clouds , 2005 .

[3]  R. Durisen,et al.  The shocking properties of supersonic flows: Dependence of the thermal overstability on M, α, and T$\mathsf{_{c}}\,$/ T$\mathsf{_{0}}$ , 2005, astro-ph/0504640.

[4]  Jongsoo Kim,et al.  The Pressure Distribution in Thermally Bistable Turbulent Flows , 2005, astro-ph/0504444.

[5]  U. Exeter,et al.  Star formation in unbound giant molecular clouds: the origin of OB associations? , 2005, astro-ph/0503141.

[6]  Zhi-Yun Li,et al.  Quiescent Cores and the Efficiency of Turbulence-accelerated, Magnetically Regulated Star Formation , 2005, astro-ph/0502130.

[7]  Jongsoo Kim,et al.  Submitted to The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 14/09/00 THE LIFETIMES AND EVOLUTION OF MOLECULAR CLOUD CORES , 2004 .

[8]  R. Dettmar,et al.  The Magnetized Plasma in Galaxy Evolution , 2005 .

[9]  P. Hennebelle,et al.  Thermal condensation in a turbulent atomic hydrogen flow , 2004, astro-ph/0410062.

[10]  Zhi-Yun Li,et al.  Magnetically Regulated Star Formation in Turbulent Clouds , 2004, astro-ph/0405615.

[11]  John C. Raymond,et al.  Molecular Cloud Formation behind Shock Waves , 2004, astro-ph/0405329.

[12]  Michael L. Norman,et al.  The Formation of Self-Gravitating Cores in Turbulent Magnetized Clouds , 2003, astro-ph/0312622.

[13]  I. Bonnell,et al.  Star formation in transient molecular clouds , 2003, astro-ph/0311286.

[14]  H. Koyama,et al.  The Field Condition: A New Constraint on Spatial Resolution in Simulations of the Nonlinear Development of Thermal Instability , 2003, astro-ph/0302126.

[15]  G. D. Castro,et al.  Magnetic fields and star formation : theory versus observations , 2004 .

[16]  R. Crutcher What Drives Star Formation? , 2003 .

[17]  R. Larson The physics of star formation , 2003, astro-ph/0306595.

[18]  R. Klessen,et al.  A Holistic Scenario of Turbulent Molecular Cloud Evolution and Control of the Star Formation Efficiency: First Tests , 2003, astro-ph/0301546.

[19]  C. Brunt Large-Scale Turbulence in Molecular Clouds , 2003 .

[20]  Volker Bromm,et al.  The formation of a star cluster: predicting the properties of stars and brown dwarfs , 2002, astro-ph/0212380.

[21]  L. Hartmann,et al.  Comments on Inferences of Star Formation Histories and Birth Lines , 2002, astro-ph/0211021.

[22]  C. Heiles,et al.  THE MILLENNIUM ARECIBO 21-CM ABSORPTION LINE SURVEY . II . PROPERTIES OF THE WARM AND COLD NEUTRAL MEDIA , 2002 .

[23]  A. Gazol,et al.  The Nonlinear Development of the Thermal Instability in the Atomic Interstellar Medium and Its Interaction with Random Fluctuations , 2002, astro-ph/0203067.

[24]  T. Passot,et al.  Thermal Instability and Magnetic Pressure in the Turbulent Interstellar Medium , 2002 .

[25]  H. Koyama Formation of molecular clouds , 2004 .

[26]  L. Hartmann,et al.  Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood , 2001, astro-ph/0108023.

[27]  T. Tripp,et al.  The Distribution of Thermal Pressures in the Interstellar Medium from a Survey of C I Fine-Structure Excitation , 2001, astro-ph/0107177.

[28]  R. Allen,et al.  The formation of molecular clouds , 2001, astro-ph/0106420.

[29]  P. Myers,et al.  New OH Zeeman Measurements of Magnetic Field Strengths in Molecular Clouds , 2001, astro-ph/0102469.

[30]  H. Koyama,et al.  An Origin of Supersonic Motions in Interstellar Clouds , 2001, astro-ph/0112420.

[31]  R. Klessen,et al.  Gravitational Collapse in Turbulent Molecular Clouds. II. Magnetohydrodynamical Turbulence , 2000, astro-ph/0009227.

[32]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[33]  D. Folini,et al.  On the Stability of Colliding Flows: Radiative Shocks, ThinShells, and Supersonic Turbulence , 2000 .

[34]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[35]  J. Silk,et al.  The Polytropic Equation of State of Interstellar Gas Clouds , 2000, astro-ph/0002483.

[36]  B. Elmegreen Star Formation in a Crossing Time , 1999, astro-ph/9911172.

[37]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[38]  R. Klessen,et al.  Gravitational Collapse in Turbulent Molecular Clouds. I. Gasdynamical Turbulence , 1999, astro-ph/9911068.

[39]  L. Hartmann,et al.  Turbulent Flow-driven Molecular Cloud Formation: A Solution to the Post-T Tauri Problem? , 1999, astro-ph/9907053.

[40]  P. Padoan,et al.  A Super-Alfvénic Model of Dark Clouds , 1999, astro-ph/9901288.

[41]  J. Scalo,et al.  Clouds as Turbulent Density Fluctuations: Implications for Pressure Confinement and Spectral Line Data Interpretation , 1998, astro-ph/9806059.

[42]  Charles J. Lada,et al.  The Origin of Stars and Planetary Systems , 1999 .

[43]  Richard M. Crutcher,et al.  Magnetic Fields in Molecular Clouds: Observations Confront Theory , 1998 .

[44]  M. M. Low The Energy Dissipation Rate of Supersonic, Magnetohydrodynamic Turbulence in Molecular Clouds , 1998, astro-ph/9809177.

[45]  R. Klein,et al.  Bending Mode Instabilities and Fragmentation in Interstellar Cloud Collisions: A Mechanism for Complex Structure , 1998 .

[46]  R. Klessen,et al.  Kinetic Energy Decay Rates of Supersonic and Super-Alfvénic Turbulence in Star-Forming Clouds , 1997, astro-ph/9712013.

[47]  J. Scalo,et al.  On the Probability Density Function of Galactic Gas. I. Numerical Simulations and the Significance of the Polytropic Index , 1997, astro-ph/9710075.

[48]  T. Passot,et al.  Influence of Cooling-Induced Compressibility on the Structure of Turbulent Flows and Gravitational Collapse , 1996, astro-ph/9607046.

[49]  B. Meerson Nonlinear dynamics of radiative condensations in optically thin plasmas , 1996 .

[50]  A. Tielens,et al.  The neutral atomic phases of the interstellar medium , 1995 .

[51]  P. Padoan Supersonic turbulent flows and the fragmentation of a cold medium , 1995, astro-ph/9506002.

[52]  B. Elmegreen Star Formation at Compressed Interfaces in Turbulent Self-gravitating Clouds , 1993 .

[53]  Jeremiah P. Ostriker,et al.  A Cosmological Hydrodynamic Code Based on the Total Variation Diminishing Scheme , 1993 .

[54]  E. Vishniac NONLINEAR INSTABILITIES IN SHOCK-BOUNDED SLABS , 1993, astro-ph/9306025.

[55]  A. Pollock,et al.  Colliding Winds from Early-Type Stars in Binary Systems , 1992 .

[56]  F. Shu Physics of Astrophysics, Vol. II , 1991 .

[57]  C. Lada,et al.  Book-Review - the Physics of Star Formation and Early Stellar Evolution , 1991 .

[58]  P. Maloney Are molecular clouds in virial equilibrium , 1990 .

[59]  A. Goodman,et al.  Evidence for magnetic and virial equilibrium in molecular clouds , 1988 .

[60]  Carl Heiles,et al.  The Atomic Component , 1987 .

[61]  J. Franco,et al.  MOLECULAR CLOUDS IN GALAXIES WITH DIFFERENT Z: FRAGMENTATION OF DIFFUSE CLOUDS DRIVEN BY OPACITY. , 1986 .

[62]  M. T. Sandford,et al.  Star formation in colliding gas flows , 1986 .

[63]  R. Maddalena,et al.  A large, cold, and unusual molecular cloud in Monoceros , 1985 .

[64]  G. Shaviv,et al.  Thermal instability in accretion flows onto degenerate stars , 1981 .

[65]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[66]  J. Ostriker,et al.  A theory of the interstellar medium - Three components regulated by supernova explosions in an inhomogeneous substrate , 1977 .

[67]  C. Max,et al.  Hydromagnetic waves in molecular clouds , 1975 .

[68]  R. McCray,et al.  Thermal instability in supernova shells , 1975 .

[69]  B. Zuckerman,et al.  Radio radiation from interstellar molecules , 1974 .

[70]  W. Kunkel Activity in Flare Stars in the Solar Neighborhood , 1973 .

[71]  G. Knapp,et al.  H I clouds with spin temperatures less than 25 K. II - Physical properties of two neutral hydrogen clouds. , 1972 .

[72]  H. Habing,et al.  Cosmic-Ray Heating of the Interstellar Gas , 1969 .

[73]  Vol Xiii,et al.  Astronomical Society of the Pacific , 1937, Nature.