Preparation of Troger Base Derivatives by Cross-Coupling Methodologies

Derivatives of the Troger base are finding increasing application in supramolecular chemistry: they are introduced as rigid scaffolds into synthetic receptors and 'molecular torsional balances' to quantify weak intermolecular interactions, and serve as efficient 'covalent templates' in the tether-directed remote functionalization of fullerenes. This paper describes the facile synthesis of symmetrically (Schemes 1 and 2) and unsymmetrically (Schemes 4 and 5) substituted Troger base derivatives starting from the corresponding, readily available dihalo compounds. A variety of metal-catalyzed cross-coupling reactions, including Suzuki couplings, palladium-catalyzed cyanation and boronation, and copper-catalyzed amidations are used to achieve these transformations. © 2005 Verlag Helvetica Chimica Acta AG.

[1]  F. Diederich,et al.  Synthesis of trans-1, trans-2, trans-3, and trans-4 bisadducts of C60 by regio- and stereoselective tether-directed remote functionalization. , 2005, Chemistry.

[2]  F. Diederich,et al.  Orthogonale multipolare Wechselwirkungen in chemischen und biologischen Strukturen , 2005 .

[3]  François Diederich,et al.  Orthogonal multipolar interactions in structural chemistry and biology. , 2005, Angewandte Chemie.

[4]  Y. Ishida,et al.  Regio/diastereo-controls of the Bingel-type biscyclopropanation of [60]fullerene by using bismalonates with a Tröger base analogue-derived tether , 2005 .

[5]  F. Diederich,et al.  A weak attractive interaction between organic fluorine and an amide group. , 2004, Angewandte Chemie.

[6]  François Diederich,et al.  Regio‐ und stereoselektive spacergesteuerte Fernfunktionalisierung von C60 durch Derivate der Trögerschen Base , 2004 .

[7]  F. Diederich,et al.  Regio- and stereoselective tether-directed remote functionalization of C60 with derivatives of the Tröger base. , 2004, Angewandte Chemie.

[8]  J. Elguero,et al.  A New Entry to Bis‐Tröger’s Bases , 2004 .

[9]  K. Wärnmark,et al.  Influence of Scale, Stoichiometry and Temperature on the Synthesis of 2,8-Dihalo Analogues of Tröger’s Base from the Corresponding Anilines and Paraformaldehyde. , 2003 .

[10]  K. Wärnmark,et al.  General protocols for the synthesis of C(2)-symmetric and asymmetric 2,8-disubstituted analogues of Tröger's base via efficient bromine-lithium exchanges of 2,8-dibromo-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine. , 2002, The Journal of organic chemistry.

[11]  S. Buchwald,et al.  A general and efficient copper catalyst for the amidation of aryl halides. , 2002, Journal of the American Chemical Society.

[12]  K. Wärnmark,et al.  Synthesis of Halogen Substituted Analogues of Tröger’s Base , 2001 .

[13]  C. Bailly,et al.  Enantiospecific recognition of DNA sequences by a proflavine Tröger base. , 2000, Biochemical and biophysical research communications.

[14]  P. Stephens,et al.  Structure, Vibrational Absorption and Circular Dichroism Spectra, and Absolute Configuration of Tröger's Base , 2000 .

[15]  S. Buchwald,et al.  Highly Active Palladium Catalysts for Suzuki Coupling Reactions , 1999 .

[16]  C. Wilcox,et al.  Measurements of Molecular Electrostatic Field Effects in Edge-to-Face Aromatic Interactions and CH-π Interactions with Implications for Protein Folding and Molecular Recognition , 1998 .

[17]  N. Miyaura,et al.  Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters , 1995 .

[18]  Norio Miyaura,et al.  Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds , 1995 .

[19]  C. Wilcox,et al.  MOLECULAR TORSION BALANCE FOR WEAK MOLECULAR RECOGNITION FORCES. EFFECTS OF TILTED-T EDGE-TO-FACE AROMATIC INTERACTIONS ON CONFORMATIONAL SELECTION AND SOLID-STATE STRUCTURE , 1994 .

[20]  T. H. Webb,et al.  Enantioselective and diastereoselective molecular recognition of neutral molecules , 1993 .

[21]  T. H. Webb,et al.  Chemistry of synthetic receptors and functional group arrays. 16. Enantioselective and diastereoselective molecular recognition of alicyclic substrates in aqueous media by a chiral, resolved synthetic receptor , 1991 .

[22]  J. Qi,et al.  Resolution, asymmetric transformation, and configuration of Troeger's base. Application of Troeger's base as a chiral solvating agent , 1991 .

[23]  J. Scott,et al.  Clathrate formation with Troeger base analogues , 1991 .

[24]  T. H. Webb,et al.  Improved synthesis of symmetrical and unsymmetrical 5,11-methanodibenzo[b,f][1,5]diazocines. Readily available nanoscale structural units , 1990 .

[25]  C. Wilcox,et al.  Chemistry of synthetic receptors and functional group arrays. 10. Orderly functional group dyads. Recognition of biotin and adenine derivatives by a new synthetic host , 1989 .

[26]  C. Wilcox,et al.  Molecular recognition in aqueous media. Conformationally restricted water-soluble cyclophanes derived from 6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine. , 1988, Journal of the American Chemical Society.

[27]  C. Wilcox,et al.  Molecular Armatures. Synthesis and Structure of TröGer'S Base Analogues Derived From 4-, 2,4-, 3,4-, and 2,4,5-Substituted Aniline Derivatives , 1988 .

[28]  Shigeyoshi Kanoh,et al.  Practical method for the synthesis and optical resolution of axially dissymmetric 6,6'-dimethylbiphenyl-2,2'-dicarboxylic acid. , 1987 .

[29]  S. Larson,et al.  Structure of 5,11-methano-2,8-dimethyl-5,6,11,12-tetrahydrodibenzo[b,f][1,5]diazocine (Tröger's base) at 163 K , 1986 .

[30]  P. Wieland,et al.  Über die Spaltung der Tröger'schen Base in optische Antipoden, ein Beitrag zur Stereochemie des dreiwertigen Stickstoffs , 1944 .

[31]  M. A. Spielman The Structure of Troeger's Base , 1935 .

[32]  J. Tröger Ueber einige mittelst nascirenden Formaldehydes entstehende Basen , 1887 .