MreB-Dependent Organization of the E. coli Cytoplasmic Membrane Controls Membrane Protein Diffusion

[1]  S. Hell,et al.  Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane – a minimally invasive investigation by STED-FCS , 2015, Scientific Reports.

[2]  K. Cline Mechanistic Aspects of Folded Protein Transport by the Twin Arginine Translocase (Tat)* , 2015, The Journal of Biological Chemistry.

[3]  E. Garner,et al.  Bacterial Filament Systems: Toward Understanding Their Emergent Behavior and Cellular Functions* , 2015, The Journal of Biological Chemistry.

[4]  Daniel López,et al.  Exploring the Existence of Lipid Rafts in Bacteria , 2015, Microbiology and Molecular Reviews.

[5]  J. Errington Bacterial morphogenesis and the enigmatic MreB helix , 2015, Nature Reviews Microbiology.

[6]  Felix Oswald,et al.  Imaging and quantification of trans-membrane protein diffusion in living bacteria. , 2014, Physical chemistry chemical physics : PCCP.

[7]  C. Mullineaux,et al.  Independent mobility of proteins and lipids in the plasma membrane of Escherichia coli , 2014, Molecular microbiology.

[8]  Leendert W. Hamoen,et al.  The actin homologue MreB organizes the bacterial cell membrane , 2014, Nature Communications.

[9]  J. Enderlein,et al.  Quantifying the diffusion of membrane proteins and peptides in black lipid membranes with 2-focus fluorescence correlation spectroscopy. , 2013, Biophysical journal.

[10]  Juergen Haas,et al.  The Protein Model Portal—a comprehensive resource for protein structure and model information , 2013, Database J. Biol. Databases Curation.

[11]  K. Ritchie,et al.  Single-molecule imaging in live bacteria cells , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[12]  Kevin Burrage,et al.  Inferring diffusion in single live cells at the single-molecule level , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[13]  M. Goulian,et al.  Fluorescence Correlation Spectroscopy Measurements of the Membrane Protein TetA in Escherichia coli Suggest Rapid Diffusion at Short Length Scales , 2012, PloS one.

[14]  D. Rudner,et al.  Spatio-temporal organization of replication in bacteria and eukaryotes (nucleoids and nuclei). , 2012, Cold Spring Harbor perspectives in biology.

[15]  M. Rao,et al.  Active Remodeling of Cortical Actin Regulates Spatiotemporal Organization of Cell Surface Molecules , 2012, Cell.

[16]  N. Wingreen,et al.  The bacterial actin MreB rotates, and rotation depends on cell-wall assembly , 2011, Proceedings of the National Academy of Sciences.

[17]  T. Bernhardt,et al.  Using Superfolder Green Fluorescent Protein for Periplasmic Protein Localization Studies , 2011, Journal of bacteriology.

[18]  X. Zhuang,et al.  Coupled, Circumferential Motions of the Cell Wall Synthesis Machinery and MreB Filaments in B. subtilis , 2011, Science.

[19]  E. Peterman,et al.  How to quantify protein diffusion in the bacterial membrane , 2011, Biopolymers.

[20]  Aubrey V. Weigel,et al.  Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking , 2011, Proceedings of the National Academy of Sciences.

[21]  D. Weibel,et al.  Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes , 2011, Proceedings of the National Academy of Sciences.

[22]  Judith P Armitage,et al.  Spatial organization in bacterial chemotaxis , 2010, The EMBO journal.

[23]  W. Moerner,et al.  Single-molecule and superresolution imaging in live bacteria cells. , 2010, Cold Spring Harbor perspectives in biology.

[24]  Mohit Kumar,et al.  Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli. , 2010, Biophysical journal.

[25]  Kai Simons,et al.  Lipid Rafts As a Membrane-Organizing Principle , 2010, Science.

[26]  A. Holt,et al.  Lateral diffusion of membrane proteins. , 2009, Journal of the American Chemical Society.

[27]  M. Rao,et al.  Nanoclusters of GPI-Anchored Proteins Are Formed by Cortical Actin-Driven Activity , 2008, Cell.

[28]  R. Berry,et al.  Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging , 2008, Proceedings of the National Academy of Sciences.

[29]  K. Jaqaman,et al.  Robust single particle tracking in live cell time-lapse sequences , 2008, Nature Methods.

[30]  A. Viola,et al.  Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins , 2007, Nature Reviews Immunology.

[31]  Levi A. Gheber,et al.  Dynamic patches of membrane proteins. , 2007, Biophysical journal.

[32]  W. Webb,et al.  Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. , 2007, Biochimica et biophysica acta.

[33]  S. Alexeeva,et al.  DNA and origin region segregation are not affected by the transition from rod to sphere after inhibition of Escherichia coli MreB by A22 , 2007, Molecular microbiology.

[34]  Akihiro Kusumi,et al.  Dynamic recruitment of phospholipase Cγ at transiently immobilized GPI-anchored receptor clusters induces IP3–Ca2+ signaling: single-molecule tracking study 2 , 2007, The Journal of cell biology.

[35]  Hervé Rigneault,et al.  Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork , 2006, The EMBO journal.

[36]  Hervé Rigneault,et al.  Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. , 2005, Biophysical journal.

[37]  Helen R Saibil,et al.  The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Akihiro Kusumi,et al.  Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. , 2005, Annual review of biophysics and biomolecular structure.

[39]  M. Saxton,et al.  Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level. , 2005, Biophysical journal.

[40]  E M Judd,et al.  Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  T. Waldmann,et al.  Dynamic, yet structured: The cell membrane three decades after the Singer–Nicolson model , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J. Käs,et al.  Apparent subdiffusion inherent to single particle tracking. , 2002, Biophysical journal.

[43]  Akihiro Kusumi,et al.  Phospholipids undergo hop diffusion in compartmentalized cell membrane , 2002, The Journal of cell biology.

[44]  A Kusumi,et al.  Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. , 2001, Biophysical journal.

[45]  B. Berks,et al.  TatD Is a Cytoplasmic Protein with DNase Activity , 2000, The Journal of Biological Chemistry.

[46]  G. Schütz,et al.  Free Brownian motion of individual lipid molecules in biomembranes. , 1999, Biophysical journal.

[47]  Itzhak Fishov,et al.  Visualization of membrane domains in Escherichia coli , 1999, Molecular microbiology.

[48]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[49]  A Kusumi,et al.  Cell surface organization by the membrane skeleton. , 1996, Current opinion in cell biology.

[50]  D. Belin,et al.  Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter , 1995, Journal of bacteriology.

[51]  H. Qian,et al.  Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. , 1991, Biophysical journal.

[52]  W. Cook,et al.  Compartmentalization of the periplasmic space at division sites in gram-negative bacteria , 1986, Journal of bacteriology.

[53]  P. Saffman,et al.  Brownian motion in biological membranes. , 1975, Proceedings of the National Academy of Sciences of the United States of America.