THE [Fe/H], [C/Fe], AND [α/Fe] DISTRIBUTIONS OF THE BOÖTES I DWARF SPHEROIDAL GALAXY

We present the results of a low-resolution spectral abundance study of 25 stars in the Boötes I dwarf spheroidal (dSph) galaxy. The data were obtained with the low resolution imaging spectrometer instrument at Keck Observatory and allow us to measure [Fe/H], [C/Fe], and [α/Fe] for each star. We find both a large spread in metallicity (2.1 dex in [Fe/H]) as well as a low average metallicity in this system, 〈[Fe/H]〉 = −2.59, matching previous estimates. This sample includes a newly discovered extremely metal-poor star, with [Fe/H] = −3.8, that is one of the most metal-poor stars yet found in a dSph. We compare the metallicity distribution function of Boötes I to analytic chemical evolution models. While the metallicity distribution function of Boötes I is best fit by an Extra Gas chemical evolution model, leaky-box models also provide reasonable fits. We also find that the [α/Fe] distribution and the carbon-enhanced metal-poor fraction of our sample (12%) are reasonable matches to Galactic halo star samples in the same metallicity range, indicating that at these low metallicities, systems like the Boötes I ultra-faint dSph could have been contributors to the Galactic halo.

[1]  T. Beers,et al.  SPECTROSCOPIC STUDIES OF EXTREMELY METAL-POOR STARS WITH THE SUBARU HIGH DISPERSION SPECTROGRAPH. V. THE Zn-ENHANCED METAL-POOR STAR BS 16920–017 , 2011, 1101.4432.

[2]  David K. Lai,et al.  CHEMICAL ABUNDANCES FOR EVOLVED STARS IN M5: LITHIUM THROUGH THORIUM , 2011, 1101.0832.

[3]  S. Majewski,et al.  MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. IV. ALPHA ELEMENT DISTRIBUTIONS IN MILKY WAY SATELLITE GALAXIES , 2010, 1011.5221.

[4]  J. Simon,et al.  MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. III. METALLICITY DISTRIBUTIONS OF MILKY WAY DWARF SATELLITE GALAXIES , 2010, 1011.4937.

[5]  David K. Lai,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. V. ESTIMATION OF ALPHA-ELEMENT ABUNDANCE RATIOS FROM LOW-RESOLUTION SDSS/SEGUE STELLAR SPECTRA , 2010, 1010.2934.

[6]  T. Beers,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. IV. VALIDATION WITH AN EXTENDED SAMPLE OF GALACTIC GLOBULAR AND OPEN CLUSTERS , 2010, 1008.1959.

[7]  R. Wyse,et al.  AN EXTREMELY CARBON-RICH, EXTREMELY METAL-POOR STAR IN THE SEGUE 1 SYSTEM , 2010, 1008.0450.

[8]  Mark I. Wilkinson,et al.  CHEMICAL ENRICHMENT IN THE FAINTEST GALAXIES: THE CARBON AND IRON ABUNDANCE SPREADS IN THE BOÖTES I DWARF SPHEROIDAL GALAXY AND THE SEGUE 1 SYSTEM , 2010, 1008.0137.

[9]  J. Simon,et al.  Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor , 2009, Nature.

[10]  R. Wyse,et al.  BOO–1137—AN EXTREMELY METAL-POOR STAR IN THE ULTRA-FAINT DWARF SPHEROIDAL GALAXY BOÖTES I , 2009, 0911.5350.

[11]  Puragra Guhathakurta,et al.  MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. I. THE SCULPTOR DWARF SPHEROIDAL GALAXY , 2009, 0909.3092.

[12]  Ž. Ivezić,et al.  STRUCTURE AND KINEMATICS OF THE STELLAR HALOS AND THICK DISKS OF THE MILKY WAY BASED ON CALIBRATION STARS FROM SLOAN DIGITAL SKY SURVEY DR7 , 2009, 0909.3019.

[13]  David K. Lai,et al.  A UNIQUE STAR IN THE OUTER HALO OF THE MILKY WAY , 2009, 0904.4693.

[14]  Anna Frebel,et al.  HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: URSA MAJOR II and COMA BERENICES , 2009, 0902.2395.

[15]  G. Wallerstein,et al.  THE AGE AND METALLICITY OF THE BOÖTES I SYSTEM , 2008, 0810.4353.

[16]  I. Roederer CHEMICAL INHOMOGENEITIES IN THE MILKY WAY STELLAR HALO , 2008, 0810.3648.

[17]  V. Belokurov,et al.  Accepted for publication in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE HIGHLY UNUSUAL CHEMICAL COMPOSITION OF THE HERCULES DWARF SPHEROIDAL GALAXY 1 , 2022 .

[18]  S. Courteau,et al.  Scaling relations and the fundamental line of the local group dwarf galaxies , 2008, 0807.1331.

[19]  N. Prantzos The metallicity distribution of the halo and the satellites of the Milky Way in the hierarchical merging paradigm , 2008, 0807.1502.

[20]  Heidelberg,et al.  A Comprehensive Maximum Likelihood Analysis of the Structural Properties of Faint Milky Way Satellites , 2008, 0805.2945.

[21]  Puragra Guhathakurta,et al.  Metallicity and Alpha-Element Abundance Measurement in Red Giant Stars from Medium-Resolution Spectra , 2008, 0804.3590.

[22]  B. Yanny,et al.  Submitted for publication in the Astronomical Journal The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars 1 , 2022 .

[23]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. II. VALIDATION WITH GALACTIC GLOBULAR AND OPEN CLUSTERS , 2007, 0710.5778.

[24]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. I. DESCRIPTION AND COMPARISON OF INDIVIDUAL METHODS , 2007, 0710.5645.

[25]  Amina Helmi,et al.  Analysis and calibration of CaII triplet spectroscopy of red giant branch stars from VLT/FLAMES observations , 2007, 0710.0798.

[26]  V. Smith,et al.  Chemical Abundances and Kinematics in Globular Clusters and Local Group Dwarf Galaxies and Their Implications for Formation Theories of the Galactic Halo , 2007, 0708.0570.

[27]  D. York,et al.  Two stellar components in the halo of the Milky Way , 2007, Nature.

[28]  David K. Lai,et al.  Carbon and Strontium Abundances of Metal-poor Stars , 2007, 0706.3043.

[29]  N. F. Martin,et al.  A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies , 2007, 0705.4622.

[30]  L. Wisotzki,et al.  A New Type of Extremely Metal-poor Star , 2007, astro-ph/0703341.

[31]  T. Beers,et al.  Near-Infrared Spectroscopy of Carbon-Enhanced Metal-Poor Stars. I. A SOAR/OSIRIS Pilot Study , 2006, astro-ph/0611827.

[32]  T. Beers,et al.  Carbon-enhanced Metal-poor Stars. I. Chemical Compositions of 26 Stars , 2006, astro-ph/0609702.

[33]  T. Beers,et al.  The Frequency of Carbon-enhanced Metal-poor Stars in the Galaxy from the HERES Sample , 2006, astro-ph/0609730.

[34]  Jeffrey L. Carlin,et al.  Exploring Halo Substructure with Giant Stars: The Dynamics and Metallicity of the Dwarf Spheroidal in Boötes , 2006, astro-ph/0606271.

[35]  B. Yanny,et al.  A Faint New Milky Way Satellite in Bootes , 2006, astro-ph/0604355.

[36]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[37]  B. Robertson,et al.  Phase-Space Distributions of Chemical Abundances in Milky Way-Type Galaxy Halos , 2005, astro-ph/0512611.

[38]  S. Shectman,et al.  The Frequency of Carbon Stars among Extremely Metal-poor Stars , 2005, astro-ph/0510105.

[39]  J. Bullock,et al.  Tracing Galaxy Formation with Stellar Halos. I. Methods , 2005, astro-ph/0506467.

[40]  Lars Hernquist,et al.  Λ Cold Dark Matter, Stellar Feedback, and the Galactic Halo Abundance Pattern , 2005, astro-ph/0501398.

[41]  R. Michael Rich,et al.  Draco 119: A Remarkable Heavy-Element-deficient Giant , 2004, astro-ph/0409646.

[42]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[43]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[44]  University of British Columbia,et al.  Feedback and the fundamental line of low-luminosity low-surface-brightness/dwarf galaxies , 2002, astro-ph/0210454.

[45]  M. Shetrone,et al.  New Analyses of Star-to-Star Abundance Variations among Bright Giants in the Mildly Metal-poor Globular Cluster M5 , 2001, astro-ph/0106249.

[46]  C. Sneden,et al.  Barium and Sodium Abundances in the Globular Clusters M15 and M92 , 2000 .

[47]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[48]  D. Lynden-Bell The chemical evolution of galaxies , 1975 .