Terahertz generation in submicron GaN diodes within the limited space-charge accumulation regime

The conditions for microwave power generation with hot-electron transport are investigated in a submicron GaN diode when it operates in the limited space-charge accumulation (LSA) mode. Applying a transport model based on the local quasistatic approximation, the analysis shows that the nitride diodes can support the LSA mode of oscillation in the terahertz-frequency range. For a 100nm n-GaN diode with a cross section of 500μm2 and the electron density of 1×1017cm−3, the generated microwave power is estimated to be as high as ≈0.6W with the corresponding dc-to-rf conversion efficiency of ≈9% and the negative differential resistance of ≈−1.3Ω; which thus provides an efficient mechanism to achieve very high-frequency microwave generation in the nitrides.

[1]  Michael A. Littlejohn,et al.  Monte Carlo calculation of the velocity‐field relationship for gallium nitride , 1975 .

[2]  D. Ferry High-field transport in wide-band-gap semiconductors , 1975 .

[3]  Dwight L. Woolard,et al.  High-frequency small-signal conductivity of hot electrons in nitride semiconductors , 2004 .

[4]  Michael S. Shur,et al.  Transient electron transport in wurtzite GaN, InN, and AlN , 1999 .

[5]  V. Sridhara,et al.  Monte Carlo analysis of GaN-based Gunn oscillators for microwave power generation , 2003 .

[6]  Gary W. Wicks,et al.  Hot electron relaxation time in GaN , 1999 .

[7]  K. W. Kim,et al.  Phase-plane analysis and classification of transient regimes for high-field electron transport in nitride semiconductors , 2004 .

[8]  S. Denbaars,et al.  Ultrafast electron dynamics study of GaN , 1999 .

[9]  M. Shur,et al.  Monte Carlo simulation of electron transport in gallium nitride , 1993 .

[10]  H. Lüth,et al.  Hot-electron transport in AlGaN/GaN two-dimensional conducting channels , 2004 .

[11]  A. Allerman,et al.  High field transport in GaN/AlGaN heterostructures , 2004 .

[12]  Stephen J. Pearton,et al.  Fabrication and performance of GaN electronic devices , 2000 .

[13]  K. Brennan,et al.  Electron transport characteristics of GaN for high temperature device modeling , 1998 .

[14]  M. Shur,et al.  Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe , 2001 .

[15]  Lester F. Eastman,et al.  Hot-phonon temperature and lifetime in a biased Al x Ga 1 − x N / G a N channel estimated from noise analysis , 2003 .

[16]  K. Brennan,et al.  Monte Carlo calculation of two-dimensional electron dynamics in GaN–AlGaN heterostructures , 2002 .

[17]  John A. Copeland,et al.  LSA Oscillator‐Diode Theory , 1967 .

[18]  C. T. Foxon,et al.  Energy relaxation by hot electrons in n-GaN epilayers , 2001 .

[19]  R. J. Shul,et al.  Bulk GaN and AlGaN∕GaN heterostructure drift velocity measurements and comparison to theoretical models , 2005 .

[20]  L. Reggiani,et al.  Monte Carlo study of hot-carrier transport in bulk wurtzite GaN and modeling of a near-terahertz impact avalanche transit time diode , 2004 .

[21]  D. Pavlidis,et al.  Large-signal microwave performance of GaN-based NDR diode oscillators , 2000 .

[22]  T. Thornton,et al.  High field transport studies of GaN , 2002 .

[23]  Michael S. Shur,et al.  Comparison of high field electron transport in GaN and GaAs , 1997 .

[24]  Peter K. Shu,et al.  Direct observation of transferred-electron effect in GaN , 1995 .

[25]  I. Ferguson,et al.  Time-resolved electroabsorption measurement of the transient electron velocity overshoot in GaN , 2001 .

[26]  R. J. Shul,et al.  GAN : PROCESSING, DEFECTS, AND DEVICES , 1999 .

[27]  C. Bulutay,et al.  Gunn oscillations in GaN channels , 2004 .

[28]  L. Eastman,et al.  Separation of hot-electron and self-heating effects in two-dimensional AlGaN/GaN-based conducting channels , 2003 .

[29]  Michael A. Littlejohn,et al.  Theoretical study of electron transport in gallium nitride , 1995 .

[30]  Heribert Eisele,et al.  Two-terminal active devices for terahertz sources , 2003 .

[31]  L. Challis,et al.  Changeover from acoustic to optic mode phonon emission by a hot two-dimensional electron gas in the gallium arsenide/aluminium gallium arsenide heterojunction , 1992 .

[32]  B. Ridley,et al.  Hot electrons in nonparabolic bands with acoustic and polar optical phonon scattering , 1973 .

[33]  Hughes,et al.  Continuous-wave spectroscopy of femtosecond carrier scattering in GaAs. , 1990, Physical review. B, Condensed matter.

[34]  K. Brennan,et al.  Electronic transport studies of bulk zincblende and wurtzite phases of GaN based on an ensemble Monte Carlo calculation including a full zone band structure , 1995 .

[35]  Lester F. Eastman,et al.  Hot-phonon effect on power dissipation in a biasedAlxGa1−xN∕AlN∕GaNchannel , 2005 .

[36]  Michael S. Shur,et al.  Gaas Devices And Circuits , 1987 .

[37]  Hongen Shen,et al.  Time-resolved electroabsorption measurement of the electron velocity-field characteristic in GaN , 2000 .