The Jones slopes of a knot

The paper introduces Slope Conjecture which relates the degree of the Jones polynomial of a knot and its parallels with the slopes of incompressible surfaces in the knot complement. More precisely, we introduce two knot invariants, the Jones slopes (a finite set of rational numbers) and the Jones period (a natural number) of a knot in 3-space. We formulate a number of conjectures for these invariants and verify them by explicit computations for the class of alternating knots, torus knots, the knots with at most 9 crossings, and the $(-2,3,n)$ pretzel knots.

[1]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[2]  Stavros Garoufalidis,et al.  The Degree of a q-Holonomic Sequence is a Quadratic Quasi-Polynomial , 2010, Electron. J. Comb..

[3]  J. Gonz'alez-Meneses,et al.  A geometric characterization of the upper bound for the span of the jones polynomial , 2009, 0907.5374.

[4]  R. Veen,et al.  Asymptotics of quantum spin networks at a fixed root of unity , 2010, 1003.4954.

[5]  S. Garoufalidis Knots and tropical curves , 2010, 1003.4436.

[6]  THE JONES POLYNOMIAL AND BOUNDARY SLOPES OF ALTERNATING KNOTS , 2009, 0910.4912.

[7]  F. Costantino Integrality of Kauffman brackets of trivalent graphs , 2009, 0908.0542.

[8]  K. Ichihara,et al.  BOUNDARY SLOPES AND THE NUMBERS OF POSITIVE/NEGATIVE CROSSINGS FOR MONTESINOS KNOTS , 2008, 0809.4435.

[9]  T. Mattman,et al.  2-BRIDGE KNOT BOUNDARY SLOPES: DIAMETER AND GENUS , 2008 .

[10]  The moon is there when nobody looks , 2008 .

[11]  P. Ozsváth,et al.  On the Khovanov and knot Floer homologies of quasi-alternating links , 2007, 0708.3249.

[12]  S. Robins,et al.  Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra , 2007 .

[13]  J. Purcell,et al.  Dehn filling, volume, and the Jones polynomial , 2006, math/0612138.

[14]  Thang T. Q. Lê,et al.  IS THE JONES POLYNOMIAL OF A KNOT REALLY A POLYNOMIAL , 2006, math/0601139.

[15]  M. Hedden,et al.  The Ozsváth-Szabó and Rasmussen Concordance Invariants are not Equal , 2005, math/0512348.

[16]  F. Luo,et al.  Angle structures and normal surfaces , 2005, math/0510537.

[17]  K. Ichihara,et al.  Crossing number and diameter of boundary slope set of Montesinos knot , 2005, math/0510370.

[18]  Y. Lan,et al.  Experimental evidence for the Volume Conjecture for the simplest hyperbolic non-2–bridge knot , 2004, math/0412331.

[19]  Thang T. Q. Lê,et al.  The colored Jones function is q-holonomic , 2003, math/0309214.

[20]  J. Hyam Rubinstein,et al.  Ideal triangulations of 3-manifolds I: spun normal surface theory , 2004, math/0410541.

[21]  Thang T. Q. Lê The colored Jones polynomial and the A-polynomial of Knots☆ , 2004, math/0407521.

[22]  Benjamin A. Burton Introducing Regina, The 3-Manifold Topology Software , 2004, Exp. Math..

[23]  S. Garoufalidis On the characteristic and deformation varieties of a knot , 2003, math/0306230.

[24]  P. Ozsváth,et al.  On the Floer homology of plumbed three-manifolds , 2002, math/0203265.

[25]  Sergei Matveev,et al.  Algorithmic Topology and Classification of 3-Manifolds , 2003 .

[26]  L. Kauffman An Introduction to Knot Theory , 2001 .

[27]  D. Bar-Natan,et al.  A rational surgery formula for the LMO invariant , 2000, math/0007045.

[28]  M. Lackenby Taut ideal triangulations of 3–manifolds , 2000, math/0003132.

[29]  T. Mattman THE CULLER-SHALEN SEMINORMS OF THE (-2, 3, n) PRETZEL KNOT , 1999, math/9911085.

[30]  N. Dunfield A table of boundary slopes of Montesinos knots , 1999, math/9901120.

[31]  A. Barvinok,et al.  An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .

[32]  S. Boyer Dehn surgery on knots , 1998 .

[33]  Jun Zhu On Kauffman Brackets , 1997 .

[34]  Michèle Vergne,et al.  Lattice points in simple polytopes , 1997 .

[35]  Stavros Garoufalidis,et al.  On the Melvin–Morton–Rozansky conjecture , 1996 .

[36]  R. Kashaev The Hyperbolic Volume of Knots from the Quantum Dilogarithm , 1996, q-alg/9601025.

[37]  Masahico Saito,et al.  The Classical and Quantum 6j-symbols. , 1995 .

[38]  H. Morton The coloured Jones function and Alexander polynomial for torus knots , 1995, Mathematical Proceedings of the Cambridge Philosophical Society.

[39]  Darren D. Long,et al.  Plane curves associated to character varieties of 3-manifolds , 1994 .

[40]  J. Barrett,et al.  Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds , 1994 .

[41]  Doron Zeilberger,et al.  An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .

[42]  D. Zeilberger A holonomic systems approach to special functions identities , 1990 .

[43]  V. Turaev a Simple Proof of the Murasugi and Kauffman Theorems on Alternating Links , 1990 .

[44]  U. Oertel,et al.  Boundary slopes for Montesinos knots , 1989 .

[45]  M. Thistlethwaite,et al.  Some links with non-trivial polynomials and their crossing-numbers , 1988 .

[46]  V. Turaev The Yang-Baxter equation and invariants of links , 1988 .

[47]  Leningrad Depa The Yang-Baxter equation and invariants of links , 1988 .

[48]  V. Jones Hecke algebra representations of braid groups and link polynomials , 1987 .

[49]  K. Murasugi Jones polynomials and classical conjectures in knot theory. II , 1987, Mathematical Proceedings of the Cambridge Philosophical Society.

[50]  Morwen Thistlethwaite,et al.  A spanning tree expansion of the jones polynomial , 1987 .

[51]  Louis H. Kauffman,et al.  State Models and the Jones Polynomial , 1987 .

[52]  M. Culler,et al.  Dehn surgery on knots , 1985 .

[53]  N. David Mermin,et al.  Is the Moon There When Nobody Looks? Reality and the Quantum Theory , 1985 .

[54]  M. Culler,et al.  Bounded, separating, incompressible surfaces in knot manifolds , 1984 .

[55]  A. Hatcher,et al.  Boundary Curves of Incompressible Surfaces , 1982 .