Machine learning insights into predicting biogas separation in metal-organic frameworks

[1]  E. Besley,et al.  Do Residual Solvent Molecules Always Hinder Gas Sorption in Metal–Organic Frameworks? , 2023, Chemistry of Materials.

[2]  R. Babarao,et al.  Accelerating the prediction of CO2 capture at low partial pressures in metal-organic frameworks using new machine learning descriptors , 2023, Communications chemistry.

[3]  N. Hondow,et al.  Gradient Boosted Machine Learning Model to Predict H2, CH4, and CO2 Uptake in Metal–Organic Frameworks Using Experimental Data , 2023, J. Chem. Inf. Model..

[4]  Seda Keskin,et al.  Recent advances in computational modeling of MOFs: From molecular simulations to machine learning , 2023, Coordination Chemistry Reviews.

[5]  Noah J. Wichrowski,et al.  Machine learning-assisted crystal engineering of a zeolite , 2023, Nature communications.

[6]  Andrew S. Rosen,et al.  An Ecosystem for Digital Reticular Chemistry , 2023, ACS central science.

[7]  Peter G. Boyd,et al.  ARC–MOF: A Diverse Database of Metal-Organic Frameworks with DFT-Derived Partial Atomic Charges and Descriptors for Machine Learning , 2023, Chemistry of Materials.

[8]  J. Li,et al.  Multi-scale design of MOF-based membrane separation for CO2/CH4 mixture via integration of molecular simulation, machine learning and process modeling and simulation , 2023, Journal of Membrane Science.

[9]  Rishikesh Magar,et al.  MOFormer: Self-Supervised Transformer Model for Metal–Organic Framework Property Prediction , 2022, Journal of the American Chemical Society.

[10]  E. Besley,et al.  Computational Predictions for Effective Separation of Xenon/Krypton Gas Mixtures in the MFM Family of Metal–Organic Frameworks , 2022, The Journal of Physical Chemistry C.

[11]  Juyong Lee,et al.  Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments , 2022, Nature Communications.

[12]  Yun Shi,et al.  Effects of data quality and quantity on deep learning for protein-ligand binding affinity prediction. , 2022, Bioorganic & medicinal chemistry.

[13]  B. Smit,et al.  Data-driven matching of experimental crystal structures and gas adsorption isotherms of metal-organic frameworks , 2021, Journal of Chemical & Engineering Data.

[14]  Nasruddin,et al.  Multi-objective genetic algorithm optimization with an artificial neural network for CO2/CH4 adsorption prediction in metal–organic framework , 2021 .

[15]  S. Deng,et al.  Temperature swing adsorption for CO2 capture: Thermal design and management on adsorption bed with single-tube/three-tube internal heat exchanger , 2021, Applied Thermal Engineering.

[16]  T. Mahlia,et al.  Biogas upgrading, economy and utilization: a review , 2021, Environmental Chemistry Letters.

[17]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[18]  Chenru Duan,et al.  Using Machine Learning and Data Mining to Leverage Community Knowledge for the Engineering of Stable Metal-Organic Frameworks , 2021, Journal of the American Chemical Society.

[19]  Anubhav Jain,et al.  Best practices in machine learning for chemistry , 2021, Nature Chemistry.

[20]  Samuel Boobier,et al.  Machine learning with physicochemical relationships: solubility prediction in organic solvents and water , 2020, Nature Communications.

[21]  Ryther Anderson,et al.  Large-Scale Free Energy Calculations on a Computational Metal–Organic Frameworks Database: Toward Synthetic Likelihood Predictions , 2020 .

[22]  I. Kushkevych,et al.  Biogas upgrading methods: recent advancements and emerging technologies , 2020, Reviews in Environmental Science and Bio/Technology.

[23]  Peter G. Boyd,et al.  Understanding the diversity of the metal-organic framework ecosystem , 2020, Nature Communications.

[24]  P. Webley,et al.  Separation of CO2 and CH4 by Pressure Swing Adsorption Using a Molecular Trapdoor Chabazite Adsorbent for Natural Gas Purification , 2020 .

[25]  Ruiqi Wang,et al.  Comparative analysis on temperature swing adsorption cycle for carbon capture by using internal heat/mass recovery , 2020 .

[26]  F. Abnisa,et al.  A review on production of metal organic frameworks (MOF) for CO2 adsorption. , 2019, The Science of the total environment.

[27]  Wei Zhou,et al.  Porous metal-organic frameworks for gas storage and separation: Status and challenges. , 2019, EnergyChem.

[28]  Weiquan Cai,et al.  Understanding Quantitative Relationship between Methane Storage Capacities and Characteristic Properties of Metal–Organic Frameworks Based on Machine Learning , 2019, The Journal of Physical Chemistry C.

[29]  High-Throughput Screening of MOF Adsorbents and Membranes for H2 Purification and CO2 Capture , 2018, ACS applied materials & interfaces.

[30]  Carlos A. Grande,et al.  Pressure Swing Adsorption for Biogas Upgrading with Carbon Molecular Sieve , 2018 .

[31]  Peter G. Boyd,et al.  Accurate Characterization of the Pore Volume in Microporous Crystalline Materials , 2017, Langmuir : the ACS journal of surfaces and colloids.

[32]  Peyman Z. Moghadam,et al.  Development of a Cambridge Structural Database Subset: A Collection of Metal-Organic Frameworks for Past, Present, and Future , 2017 .

[33]  Tom K. Woo,et al.  Quantitative Structure–Property Relationship Models for Recognizing Metal Organic Frameworks (MOFs) with High CO2 Working Capacity and CO2/CH4 Selectivity for Methane Purification , 2016 .

[34]  Logan T. Ward,et al.  A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials , 2016, 1606.09551.

[35]  M. Tsapatsis,et al.  Identifying Optimal Zeolitic Sorbents for Sweetening of Highly Sour Natural Gas. , 2016, Angewandte Chemie.

[36]  R. Snurr,et al.  RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials , 2016 .

[37]  Maciej Haranczyk,et al.  What Are the Best Materials To Separate a Xenon/Krypton Mixture? , 2015 .

[38]  Tom K Woo,et al.  Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture. , 2014, The journal of physical chemistry letters.

[39]  Arthur P.J. Mol,et al.  The social organization of agricultural biogas production and use , 2013 .

[40]  Randall Q. Snurr,et al.  Large-Scale Quantitative Structure–Property Relationship (QSPR) Analysis of Methane Storage in Metal–Organic Frameworks , 2013 .

[41]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[42]  C. Wilmer,et al.  Thermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworks , 2012 .

[43]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[44]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[45]  Maciej Haranczyk,et al.  Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials , 2012 .

[46]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[47]  Omar M Yaghi,et al.  The pervasive chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[48]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[49]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[50]  O. Yaghi,et al.  Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels , 1995 .

[51]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[52]  R. Robson,et al.  Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments , 1989 .

[53]  M. J. Rosseinsky,et al.  Supporting Information Machine-Learning Prediction of Metal–Organic Framework Guest Accessibility from Linker and Metal Chemistry , 2022 .

[54]  Lorenz T. Biegler,et al.  Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration , 2003 .