Biofilms: an emergent form of bacterial life

[1]  A. Decho,et al.  Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems , 2017, Front. Microbiol..

[2]  Ofer Fridman,et al.  Distinguishing between resistance, tolerance and persistence to antibiotic treatment , 2016, Nature Reviews Microbiology.

[3]  K. Sauer,et al.  Escaping the biofilm in more than one way: desorption, detachment or dispersion. , 2016, Current opinion in microbiology.

[4]  Thomas Bjarnsholt,et al.  Role of Multicellular Aggregates in Biofilm Formation , 2016, mBio.

[5]  T. Battin,et al.  The ecology and biogeochemistry of stream biofilms , 2016, Nature Reviews Microbiology.

[6]  Zohar Bloom-Ackermann,et al.  Spatio-temporal assembly of functional mineral scaffolds within microbial biofilms , 2016, npj Biofilms and Microbiomes.

[7]  Alistair J. Hobday,et al.  The 'Great Southern Reef': social, ecological and economic value of Australia's neglected kelp forests , 2016 .

[8]  Blair J. Rossetti,et al.  Biogeography of a human oral microbiome at the micron scale , 2016, Proceedings of the National Academy of Sciences.

[9]  Bonnie L. Bassler,et al.  Local and global consequences of flow on bacterial quorum sensing , 2016, Nature Microbiology.

[10]  W. Kaminsky,et al.  Filamentous Bacteriophage Promote Biofilm Assembly and Function. , 2015, Cell host & microbe.

[11]  Gürol M. Süel,et al.  Ion channels enable electrical communication in bacterial communities , 2015, Nature.

[12]  Mogens Henze,et al.  Biological Wastewater Treatment: Principles, Modeling and Design , 2015 .

[13]  J. Raymond,et al.  Microbial evolution in extreme environments: microbial migration, genomic highways, and geochemical barriers in hydrothermal ecosystems , 2015, Environmental Systems Research.

[14]  Boo Shan Tseng,et al.  Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix , 2015, Proceedings of the National Academy of Sciences.

[15]  Michael Wagner,et al.  Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira , 2015, Proceedings of the National Academy of Sciences.

[16]  M. Chapman,et al.  Fueling the Fire with Fibers: Bacterial Amyloids Promote Inflammatory Disorders. , 2015, Cell host & microbe.

[17]  D. Lovley,et al.  Seeing is believing: novel imaging techniques help clarify microbial nanowire structure and function. , 2015, Environmental microbiology.

[18]  Gürol M. Süel,et al.  Metabolic codependence gives rise to collective oscillations within biofilms , 2015, Nature.

[19]  James K Fredrickson,et al.  Ecological communities by design , 2015, Science.

[20]  A. Decho,et al.  When nanoparticles meet biofilms—interactions guiding the environmental fate and accumulation of nanoparticles , 2015, Front. Microbiol..

[21]  E. Khan,et al.  Effect of silver nanoparticles on Pseudomonas putida biofilms at different stages of maturity. , 2015, Journal of hazardous materials.

[22]  N. Boon,et al.  Biodegradation: Updating the concepts of control for microbial cleanup in contaminated aquifers. , 2015, Environmental science & technology.

[23]  S. Goodman,et al.  DNABII proteins play a central role in UPEC biofilm structure , 2015, Molecular microbiology.

[24]  S. Rice,et al.  Community quorum sensing signalling and quenching: microbial granular biofilm assembly , 2015, npj Biofilms and Microbiomes.

[25]  H. Stone,et al.  The Mechanical World of Bacteria , 2015, Cell.

[26]  P. Howell,et al.  Enzymatic modifications of exopolysaccharides enhance bacterial persistence , 2015, Front. Microbiol..

[27]  Kazuya Watanabe,et al.  Microbial interspecies interactions: recent findings in syntrophic consortia , 2015, Front. Microbiol..

[28]  Jin Sun,et al.  Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development , 2015, Front. Cell. Infect. Microbiol..

[29]  H. Flemming,et al.  Nanosilver induces a non-culturable but metabolically active state in Pseudomonas aeruginosa , 2015, Front. Microbiol..

[30]  Peer Bork,et al.  Metabolic dependencies drive species co-occurrence in diverse microbial communities , 2015, Proceedings of the National Academy of Sciences.

[31]  M. Close,et al.  Biofilm resilience to desiccation in groundwater aquifers: a laboratory and field study. , 2015, The Science of the total environment.

[32]  C. MacPhee,et al.  Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes , 2015, FEMS microbiology reviews.

[33]  H. Vlamakis,et al.  From Cell Differentiation to Cell Collectives: Bacillus subtilis Uses Division of Labor to Migrate , 2015, PLoS biology.

[34]  Christin Koch,et al.  Coupling electric energy and biogas production in anaerobic digesters – impacts on the microbiome , 2015 .

[35]  John R. Lawrence,et al.  Innovative techniques, sensors, and approaches for imaging biofilms at different scales. , 2015, Trends in microbiology.

[36]  W. D. de Vos Microbial biofilms and the human intestinal microbiome , 2015, npj Biofilms and Microbiomes.

[37]  A. Fernández-Nieves,et al.  Biofilm formation in geometries with different surface curvature and oxygen availability , 2015 .

[38]  Patrick S Doyle,et al.  Material properties of biofilms—a review of methods for understanding permeability and mechanics , 2015, Reports on progress in physics. Physical Society.

[39]  I. Olsen,et al.  Biofilm-specific antibiotic tolerance and resistance , 2015, European Journal of Clinical Microbiology & Infectious Diseases.

[40]  D. Otzen,et al.  Functional Amyloids Keep Quorum-sensing Molecules in Check* , 2015, The Journal of Biological Chemistry.

[41]  David K. Karig,et al.  Interplay of physical mechanisms and biofilm processes: review of microfluidic methods. , 2015, Lab on a chip.

[42]  M. Blokesch,et al.  The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer , 2015, Science.

[43]  N. Palmer Effects of Tropical Deforestation on Climate and Agriculture , 2014 .

[44]  S. Wuertz,et al.  Extracellular Polymeric Substance Architecture Influences Natural Genetic Transformation of Acinetobacter baylyi in Biofilms , 2014, Applied and Environmental Microbiology.

[45]  B. Little,et al.  Microbiologically influenced corrosion: an update , 2014 .

[46]  Elizabeth Nance,et al.  Single particle tracking reveals spatial and dynamic organization of the Escherichia coli biofilm matrix , 2014 .

[47]  O. Lieleg,et al.  Selected metal ions protect Bacillus subtilis biofilms from erosion. , 2014, Metallomics : integrated biometal science.

[48]  Sophie Helaine,et al.  Bacterial persisters: formation, eradication, and experimental systems. , 2014, Trends in microbiology.

[49]  S. Sørensen,et al.  High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation , 2014, The ISME Journal.

[50]  Laam Li,et al.  The importance of the viable but non-culturable state in human bacterial pathogens , 2014, Front. Microbiol..

[51]  C. Hurd,et al.  Diffusion Boundary Layers Ameliorate the Negative Effects of Ocean Acidification on the Temperate Coralline Macroalga Arthrocardia corymbosa , 2014, PloS one.

[52]  K. Gerdes,et al.  Molecular Mechanisms Underlying Bacterial Persisters , 2014, Cell.

[53]  N. Boon,et al.  Biofilm models for the food industry: hot spots for plasmid transfer? , 2014, Pathogens and disease.

[54]  Thomas Bjarnsholt,et al.  Interactions in multispecies biofilms: do they actually matter? , 2014, Trends in microbiology.

[55]  Nelly Henry,et al.  Bacterial biofilm mechanical properties persist upon antibiotic treatment and survive cell death , 2013 .

[56]  S. Rice,et al.  Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm , 2013, The ISME Journal.

[57]  R. Hengge,et al.  Cellulose as an Architectural Element in Spatially Structured Escherichia coli Biofilms , 2013, Journal of bacteriology.

[58]  C. Buddle,et al.  Vertical heterogeneity in predation pressure in a temperate forest canopy , 2013, PeerJ.

[59]  K. Jaeger,et al.  Interaction between extracellular lipase LipA and the polysaccharide alginate of Pseudomonas aeruginosa , 2013, BMC Microbiology.

[60]  Stephen M. Krone,et al.  Invasion of E. coli biofilms by antibiotic resistance plasmids. , 2013, Plasmid.

[61]  I. Bourven,et al.  Interaction of erythromycin ethylsuccinate and acetaminophen with protein fraction of extracellular polymeric substances (EPS) from various bacterial aggregates , 2013, Environmental Science and Pollution Research.

[62]  I. Chopra,et al.  Staphylococcus aureus Biofilms Promote Horizontal Transfer of Antibiotic Resistance , 2013, Antimicrobial Agents and Chemotherapy.

[63]  Stephanie M. Amato,et al.  The role of metabolism in bacterial persistence , 2013, Front. Microbiol..

[64]  M. Brenner,et al.  Liquid transport facilitated by channels in Bacillus subtilis biofilms , 2012, Proceedings of the National Academy of Sciences.

[65]  K. Foster,et al.  Competition, Not Cooperation, Dominates Interactions among Culturable Microbial Species , 2012, Current Biology.

[66]  B. Roschitzki,et al.  Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix. , 2012, Journal of proteome research.

[67]  T. Mah Biofilm-specific antibiotic resistance. , 2012, Future microbiology.

[68]  Ehud Banin,et al.  Multi-species biofilms: living with friendly neighbors. , 2012, FEMS microbiology reviews.

[69]  Andreas Schmid,et al.  Biofilms as living catalysts in continuous chemical syntheses. , 2012, Trends in biotechnology.

[70]  S. Aymerich,et al.  Bacterial swimmers that infiltrate and take over the biofilm matrix , 2012, Proceedings of the National Academy of Sciences.

[71]  S. Sørensen,et al.  The interconnection between biofilm formation and horizontal gene transfer. , 2012, FEMS immunology and medical microbiology.

[72]  Kazuya Watanabe,et al.  Microbial interspecies electron transfer via electric currents through conductive minerals , 2012, Proceedings of the National Academy of Sciences.

[73]  G. Záray,et al.  Biofilm controlled sorption of selected acidic drugs on river sediments characterized by different organic carbon content. , 2012, Chemosphere.

[74]  M. Lowman,et al.  Plant science in forest canopies--the first 30 years of advances and challenges (1980-2010). , 2012, The New phytologist.

[75]  M. Fontaine‐Aupart,et al.  Correlative Time-Resolved Fluorescence Microscopy To Assess Antibiotic Diffusion-Reaction in Biofilms , 2012, Antimicrobial Agents and Chemotherapy.

[76]  F. Schué,et al.  Terminology for biorelated polymers and applications (IUPAC Recommendations 2012) , 2012 .

[77]  Diane McDougald,et al.  Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal , 2011, Nature Reviews Microbiology.

[78]  H. Flemming,et al.  Biofilms in drinking water and their role as reservoir for pathogens. , 2011, International journal of hygiene and environmental health.

[79]  H. Flemming The perfect slime. , 2011, Colloids and surfaces. B, Biointerfaces.

[80]  E. Rubin,et al.  Characterization and Transcriptome Analysis of Mycobacterium tuberculosis Persisters , 2011, mBio.

[81]  A. Spormann,et al.  Energy-Dependent Stability of Shewanella oneidensis MR-1 Biofilms , 2011, Journal of bacteriology.

[82]  P. Bradley,et al.  Biodegradation and attenuation of steroidal hormones and alkylphenols by stream biofilms and sediments. , 2011, Environmental science & technology.

[83]  G. O’Toole,et al.  Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. , 2010, International microbiology : the official journal of the Spanish Society for Microbiology.

[84]  H. Flemming Biodeterioration of synthetic materials – A brief review , 2010 .

[85]  J. Banfield,et al.  Posttranslational modification and sequence variation of redox-active proteins correlate with biofilm life cycle in natural microbial communities , 2010, The ISME Journal.

[86]  S. Pukatzki,et al.  The Vibrio cholerae type VI secretion system displays antimicrobial properties , 2010, Proceedings of the National Academy of Sciences.

[87]  H. Flemming,et al.  The biofilm matrix , 2010, Nature Reviews Microbiology.

[88]  M. López,et al.  Exopolysaccharides favor the survival of Erwinia amylovora under copper stress through different strategies. , 2010, Research in microbiology.

[89]  F. Tuya,et al.  Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. , 2010, Integrative and comparative biology.

[90]  S. Lewenza,et al.  Pseudomonas aeruginosa produces an extracellular deoxyribonuclease that is required for utilization of DNA as a nutrient source. , 2010, Environmental microbiology.

[91]  H. Flemming,et al.  Faecal indicator bacteria in river biofilms. , 2010, Water science and technology : a journal of the International Association on Water Pollution Research.

[92]  A. Decho Overview of biopolymer-induced mineralization: What goes on in biofilms? , 2010 .

[93]  A. Gieseke,et al.  Real-Time Microsensor Measurement of Local Metabolic Activities in Ex Vivo Dental Biofilms Exposed to Sucrose and Treated with Chlorhexidine , 2010, Applied and Environmental Microbiology.

[94]  Allan Konopka,et al.  What is microbial community ecology? , 2009, The ISME Journal.

[95]  Roberto Kolter,et al.  Cannibalism enhances biofilm development in Bacillus subtilis , 2009, Molecular microbiology.

[96]  U. Szewzyk,et al.  Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe. , 2009, Journal of microbiological methods.

[97]  W. Broughton,et al.  Microbiology of the atmosphere-rock interface: how biological interactions and physical stresses modulate a sophisticated microbial ecosystem. , 2009, Annual review of microbiology.

[98]  P. Watnick,et al.  Signals, Regulatory Networks, and Materials That Build and Break Bacterial Biofilms , 2009, Microbiology and Molecular Biology Reviews.

[99]  D. Newman,et al.  Geomicrobiology, Fifth Edition , 2008 .

[100]  V. Shah Emerging Environmental Technologies , 2008 .

[101]  J. Hofkens,et al.  Architecture and spatial organization in a triple-species bacterial biofilm synergistically degrading the phenylurea herbicide linuron. , 2008, FEMS microbiology ecology.

[102]  D. M. Ward,et al.  Genomics, environmental genomics and the issue of microbial species , 2008, Heredity.

[103]  J. Nielsen,et al.  Characterization of the loosely attached fraction of activated sludge bacteria. , 2008, Water research.

[104]  Grigoriy E. Pinchuk,et al.  Utilization of DNA as a Sole Source of Phosphorus, Carbon, and Energy by Shewanella spp.: Ecological and Physiological Implications for Dissimilatory Metal Reduction , 2007, Applied and Environmental Microbiology.

[105]  H. Ceri,et al.  Multimetal resistance and tolerance in microbial biofilms , 2007, Nature Reviews Microbiology.

[106]  M. Blazquez,et al.  Biosorption of heavy metals by activated sludge and their desorption characteristics. , 2007, Journal of environmental management.

[107]  Burkhard A. Hense,et al.  Does efficiency sensing unify diffusion and quorum sensing? , 2007, Nature Reviews Microbiology.

[108]  Paul B. Rainey,et al.  Evolution of species interactions in a biofilm community , 2007, Nature.

[109]  U. Szewzyk,et al.  Bacterial extracellular DNA forming a defined network-like structure. , 2006, FEMS microbiology letters.

[110]  T. Beveridge,et al.  Membrane Vesicles: an Overlooked Component of the Matrices of Biofilms , 2006, Journal of bacteriology.

[111]  A. Griffin,et al.  Social evolution theory for microorganisms , 2006, Nature Reviews Microbiology.

[112]  B. Potts,et al.  A framework for community and ecosystem genetics: from genes to ecosystems , 2006, Nature Reviews Genetics.

[113]  M. Surette,et al.  Communication in bacteria: an ecological and evolutionary perspective , 2006, Nature Reviews Microbiology.

[114]  S. Wai,et al.  Release of the type I secreted α‐haemolysin via outer membrane vesicles from Escherichia coli , 2006 .

[115]  Robin Patel,et al.  Biofilms and Antimicrobial Resistance , 2005, Clinical orthopaedics and related research.

[116]  Jean-François Ponge Emergent properties from organisms to ecosystems: towards a realistic approach , 2005, Biological reviews of the Cambridge Philosophical Society.

[117]  S. Kjelleberg,et al.  Off the hook--how bacteria survive protozoan grazing. , 2005, Trends in microbiology.

[118]  R. Reid,et al.  Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite , 2005 .

[119]  Blaise R. Boles,et al.  Self-generated diversity produces "insurance effects" in biofilm communities. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[120]  J. Bruno,et al.  Inclusion of facilitation into ecological theory , 2003 .

[121]  Robert S. Steneck,et al.  Kelp forest ecosystems: biodiversity, stability, resilience and future , 2002, Environmental Conservation.

[122]  J. Leiva,et al.  Biofilm testing of Staphylococcus epidermidis clinical isolates: low performance of vancomycin in relation to other antibiotics. , 2002, Diagnostic microbiology and infectious disease.

[123]  J. Costerton,et al.  Biofilms as complex differentiated communities. , 2002, Annual review of microbiology.

[124]  R. Redfield Is quorum sensing a side effect of diffusion sensing? , 2002, Trends in microbiology.

[125]  Peter A. Corning,et al.  The re-emergence of "emergence": A venerable concept in search of a theory , 2002, Complex..

[126]  H. Kuramitsu,et al.  Genetic exchange between Treponema denticola and Streptococcus gordonii in biofilms. , 2002, Oral microbiology and immunology.

[127]  V. Körstgens,et al.  Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[128]  S. Kjelleberg,et al.  A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. , 2000, Environmental microbiology.

[129]  O. Nybroe,et al.  Interactions between proteolytic and non-proteolytic Pseudomonas fluorescens affect protein degradation in a model community. , 2000, FEMS microbiology ecology.

[130]  Stephen J. Wright,et al.  Light-Gap disturbances, recruitment limitation, and tree diversity in a neotropical forest , 1999, Science.

[131]  Andrew Leis,et al.  Sorption Properties of Biofilms , 1998 .

[132]  U. Szewzyk,et al.  Isolation of new bacterial species from drinking water biofilms and proof of their in situ dominance with highly specific 16S rRNA probes , 1997, Applied and environmental microbiology.

[133]  S. Okabe,et al.  Uptake and release of inert fluorescence particles by mixed population biofilms. , 1997, Biotechnology and bioengineering.

[134]  J. Lawton,et al.  Organisms as ecosystem engineers , 1994 .

[135]  R. Sinsabaugh Microbial Enzymes in Aquatic Environments. Ryszard J. Chrost , 1992 .

[136]  D. Allison,et al.  Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? , 1988, The Journal of antimicrobial chemotherapy.

[137]  K. Nealson Autoinduction of bacterial luciferase , 1977, Archives of Microbiology.

[138]  C. E. Zobell The Effect of Solid Surfaces upon Bacterial Activity , 1943, Journal of bacteriology.

[139]  Susanne Ebersbach Ecology Of Cyanobacteria Ii Their Diversity In Space And Time , 2016 .

[140]  J. Ghigo,et al.  Mechanisms of Competition in Biofilm Communities. , 2015, Microbiology spectrum.

[141]  J. Oliver,et al.  Bridging the gap between viable but non-culturable and antibiotic persistent bacteria. , 2015, Trends in microbiology.

[142]  K. Lewis,et al.  Persister cells in biofilm associated infections. , 2015, Advances in experimental medicine and biology.

[143]  Deborah Lawrence,et al.  Effects of tropical deforestation on climate and agriculture , 2015 .

[144]  J. Lawrence,et al.  Advanced techniques for in situ analysis of the biofilm matrix (structure, composition, dynamics) by means of laser scanning microscopy. , 2014, Methods in molecular biology.

[145]  J. Kaplan Biofilm matrix-degrading enzymes. , 2014, Methods in molecular biology.

[146]  R. Helm,et al.  Extracellular Matrix (ECM) , 2012 .

[147]  M. Shirtliff,et al.  The Role of Biofilms in Device-Related Infections , 2009 .

[148]  M. Shirtliff,et al.  Comprar The Role of Biofilms in Device-Related Infections | Shirtliff, Mark | 9783540681137 | Springer , 2009 .

[149]  E. Greenberg,et al.  Sociomicrobiology: the connections between quorum sensing and biofilms. , 2005, Trends in microbiology.

[150]  P Stoodley,et al.  Survival strategies of infectious biofilms. , 2005, Trends in microbiology.

[151]  Gabriel Bitton,et al.  Encyclopedia of environmental microbiology , 2002 .

[152]  Per Halkjær Nielsen,et al.  Extraction of EPS , 1999 .

[153]  D. White,et al.  Changes of biofilm properties in response to sorbed substances - an FTIR-ATR study , 1995 .

[154]  R. Smucker,et al.  Chitinase Activity in Estuarine Waters , 1991 .

[155]  J. Costerton,et al.  Bacterial biofilms in nature and disease. , 1987, Annual review of microbiology.

[156]  J. Costerton,et al.  River epilithon: toward a structural-functional model , 1984 .

[157]  R. Burns Enzyme activity in soil: Location and a possible role in microbial ecology , 1982 .