Synchronization of nonlinear systems under information constraints.

A brief survey of control and synchronization under information constraints (limited information capacity of the coupling channel) is given. Limit possibilities of nonlinear observer-based synchronization systems with first-order coders or full-order coders are considered in more detail. The existing and new theoretical results for multidimensional drive-response Lurie systems (linear part plus nonlinearity depending only on measurable outputs) are presented. It is shown that the upper bound of the limit synchronization error (LSE) is proportional to the upper bound of the transmission error. As a consequence, the upper and lower bounds of LSE are proportional to the maximum coupling signal rate and inversely proportional to the information transmission rate (channel capacity). The analysis is extended to networks having a "chain," "star," or "star-chain" topology. Adaptive chaotic synchronization under information constraints is analyzed. The results are illustrated by example: master-slave synchronization of two chaotic Chua systems coupled via a channel with limited capacity.

[1]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[2]  Alexander L. Fradkov,et al.  Nonlinear and Adaptive Control of Complex Systems , 1999 .

[3]  Denis V. Efimov,et al.  Adaptive tuning to bifurcation for time-varying nonlinear systems , 2006, Autom..

[4]  Alexander L. Fradkov,et al.  Adaptive synchronization of chaotic systems based on speed gradient method and passification , 1997 .

[5]  M Palus,et al.  Synchronization as adjustment of information rates: detection from bivariate time series. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  B. R. Andrievskii,et al.  Adaptive observer-based synchronization of the nonlinear nonpassifiable systems , 2005 .

[7]  Touchette,et al.  Information-theoretic limits of control , 1999, Physical review letters.

[8]  Guanrong Chen,et al.  Secure synchronization of a class of chaotic systems from a nonlinear observer approach , 2005, IEEE Transactions on Automatic Control.

[9]  Robin J. Evans,et al.  Topological feedback entropy and Nonlinear stabilization , 2004, IEEE Transactions on Automatic Control.

[10]  Ilʹi︠a︡ Izrailevich Blekhman,et al.  Synchronization in science and technology , 1988 .

[11]  J. Kurths,et al.  Automatic control of phase synchronization in coupled complex oscillators , 2005, Proceedings. 2005 International Conference Physics and Control, 2005..

[12]  Guanrong Chen,et al.  Generating Multiscroll Chaotic Attractors: Theories, Methods and Applications , 2006 .

[13]  Alexander L. Fradkov,et al.  Chaotic observer-based synchronization under information constraints. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  M. Hasler,et al.  Connection Graph Stability Method for Synchronized Coupled Chaotic Systems , 2004 .

[15]  C. K. Michael Tse,et al.  Adaptive Feedback Synchronization of a General Complex Dynamical Network With Delayed Nodes , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  Petar V. Kokotovic,et al.  Observer-based control of systems with slope-restricted nonlinearities , 2001, IEEE Trans. Autom. Control..

[17]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[18]  Alan V. Oppenheim,et al.  Synchronization of Lorenz-based chaotic circuits with applications to communications , 1993 .

[19]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[20]  R. Brockett,et al.  Systems with finite communication bandwidth constraints. I. State estimation problems , 1997, IEEE Trans. Autom. Control..

[21]  Ned J Corron,et al.  Information flow in chaos synchronization: fundamental tradeoffs in precision, delay, and anticipation. , 2003, Physical review letters.

[22]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[23]  Junan Lu,et al.  Pinning adaptive synchronization of a general complex dynamical network , 2008, Autom..

[24]  P. Parmananda,et al.  Control, synchronization, and replicability of aperiodic spike trains. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  M. Hasler,et al.  Persistent clusters in lattices of coupled nonidentical chaotic systems. , 2003, Chaos.

[26]  Petar V. Kokotovic,et al.  Nonlinear observers: a circle criterion design and robustness analysis , 2001, Autom..

[27]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[28]  Jinghua Xiao,et al.  Chaos synchronization in coupled systems by applying pinning control. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[30]  Allen Gersho,et al.  Theory of an Adaptive Quantizer , 1973, IEEE Trans. Commun..

[31]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[32]  V. Astakhov,et al.  Information theoretic approach to quantify complete and phase synchronization of chaos. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Alberto Isidori,et al.  Stabilizability by state feedback implies stabilizability by encoded state feedback , 2004, Syst. Control. Lett..

[34]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2004, IEEE Trans. Autom. Control..

[35]  Robin J. Evans,et al.  Feedback Control Under Data Rate Constraints: An Overview , 2007, Proceedings of the IEEE.

[36]  Shui-Nee Chow,et al.  Synchronization in lattices of coupled oscillators , 1997 .

[37]  Michael Peter Kennedy,et al.  Chaos shift keying : modulation and demodulation of a chaotic carrier using self-sychronizing chua"s circuits , 1993 .

[38]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[39]  Alexander L. Fradkov,et al.  Method of passification in adaptive control, estimation, and synchronization , 2006 .

[40]  Seth Lloyd,et al.  Information-theoretic approach to the study of control systems , 2001, physics/0104007.

[41]  Guanrong Chen,et al.  Complex networks: small-world, scale-free and beyond , 2003 .

[42]  Andrey V. Savkin,et al.  Analysis and synthesis of networked control systems: Topological entropy, observability, robustness and optimal control , 2005, Autom..

[43]  Henk Nijmeijer,et al.  A dynamical control view on synchronization , 2001 .

[44]  C. De Persis,et al.  On stabilization of nonlinear systems under data rate constraints using output measurements , 2006 .

[45]  Andrey V. Savkin,et al.  Output feedback stabilization of nonlinear networked control systems with non-decreasing nonlinearities: a matrix inequalities approach , 2007 .

[46]  Henk Nijmeijer,et al.  c ○ World Scientific Publishing Company ADAPTIVE OBSERVER-BASED SYNCHRONIZATION FOR COMMUNICATION , 1999 .

[47]  A. Matveev,et al.  Estimation and Control over Communication Networks , 2008 .

[48]  Junan Lu,et al.  Adaptive synchronization of an uncertain complex dynamical network , 2006, IEEE Transactions on Automatic Control.

[49]  Daniel Liberzon,et al.  Hybrid feedback stabilization of systems with quantized signals , 2003, Autom..

[50]  Nathan van de Wouw,et al.  Convergent dynamics, a tribute to Boris Pavlovich Demidovich , 2004, Syst. Control. Lett..

[51]  Alexander L. Fradkov,et al.  Introduction to Control of Oscillations and Chaos , 1998 .

[52]  Robin J. Evans,et al.  Adaptive Observer-Based Synchronization of Chaotic Systems With First-Order Coder in the Presence of Information Constraints , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[53]  R. Curry Estimation and Control with Quantized Measurements , 1970 .

[54]  Valentin Afraimovich,et al.  Synchronization in lattices of coupled oscillators with Neumann/periodic boundary conditions , 1998 .

[55]  Norbert Wiener,et al.  Cybernetics: Control and Communication in the Animal and the Machine. , 1949 .

[56]  Morgül,et al.  Observer based synchronization of chaotic systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[57]  M. Rabinovich,et al.  Stochastic synchronization of oscillation in dissipative systems , 1986 .

[58]  Ljupco Kocarev,et al.  Applications of symbolic dynamics in chaos synchronization , 1997 .