Finding all Maximal Area Parallelograms in a Convex Polygon

We consider the problem of finding the maximum area parallelogram (MAP) inside a given convex polygon. Our main result is an algorithm for computing the MAP in an $n$-sided polygon in $O(n^2)$ time. Achieving this running time requires proving several new structural properties of the MAP. Our algorithm actually computes all the locally maximal area parallelograms (LMAPs). In addition to the algorithm, we prove that the LMAPs interleave each other, thus the number of LMAPs is bounded by $O(n)$. We discuss applications of our result to, among others, the problem of computing the maximum area centrally-symmetric convex body (MAC) inside a convex polygon, and the simplest case of the Heilbronn Triangle Problem.

[1]  P. Strevens Iii , 1985 .

[2]  K. F. Roth On a Problem of Heilbronn , 1951 .

[3]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[4]  Joseph O'Rourke,et al.  Sweeping minimum perimeter enclosing parallelograms: Optimal crumb cleanup , 2010, CCCG.

[5]  Alok Aggarwal,et al.  Finding a minimum-weightk-link path in graphs with the concave Monge property and applications , 1994, Discret. Comput. Geom..

[6]  Bernard Chazelle,et al.  On linear-time deterministic algorithms for optimization problems in fixed dimension , 1996, SODA '93.

[7]  Parallelograms Inscribed in Convex Curves , 1960 .

[8]  C. H. Dowker On minimum circumscribed polygons , 1944 .

[9]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[10]  A. Litvak,et al.  John's Decomposition in the General Case and Applications , 2004 .

[11]  Leonidas J. Guibas,et al.  Finding extremal polygons , 1982, STOC '82.

[12]  Jan Kyncl,et al.  Peeling potatoes near-optimally in near-linear time , 2017, SIAM J. Comput..

[13]  N. Anghel A Maximal Parallelogram Characterization of Ovals Having Circles as Orthoptic Curves , 2010 .

[14]  Asish Mukhopadhyay,et al.  On the Minimum Perimeter Triangle Enclosing a Convex Polygon , 2002, JCDCG.

[15]  Jürgen Teich,et al.  Minimal enclosing parallelogram with application , 1995, SCG '95.

[16]  A. Miernowski Parallelograms inscribed in a curve having a circle as π/2-isoptic , 2008 .

[17]  Kai Jin Maximal Parallelograms in Convex Polygons - A Novel Geometric Structure , 2015 .

[18]  Hanno Lefmann,et al.  A Deterministic Polynomial-Time Algorithm for Heilbronn's Problem in Three Dimensions , 2002, SIAM J. Comput..

[19]  Alok Aggarwal,et al.  Geometric applications of a matrix-searching algorithm , 1987, SCG '86.

[20]  Sivan Toledo,et al.  Extremal polygon containment problems , 1991, SCG '91.

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  G. Toussaint Solving geometric problems with the rotating calipers , 1983 .

[23]  Martin E. Dyer,et al.  A class of convex programs with applications to computational geometry , 1992, SCG '92.

[24]  Micha Sharir,et al.  Largest Placement of One Convex Polygon Inside Another , 1998, Discret. Comput. Geom..

[25]  Otfried Cheong,et al.  Finding largest rectangles in convex polygons , 2016, Comput. Geom..

[26]  Ernst Sas,et al.  Über eine Extremumeigenschaft der Ellipsen , 1939 .

[27]  F. John Extremum Problems with Inequalities as Subsidiary Conditions , 2014 .

[28]  Joseph S. B. Mitchell,et al.  Finding large sticks and potatoes in polygons , 2006, SODA '06.

[29]  Marek Lassak,et al.  Parallelotopes of Maximum Volume in a Simplex , 1999, Discret. Comput. Geom..

[30]  E. Makai,et al.  Polyhedra inscribed and circumscribed to convex bodies , 2022 .

[31]  Alok Aggarwal,et al.  An Optimal Algorithm for Finding Minimal Enclosing Triangles , 1986, J. Algorithms.

[32]  Safe domain and elementary geometry , 2004, physics/0410034.

[33]  Yin Zhang An Interior-Point Algorithm for the Maximum-Volume Ellipsoid Problem , 1999 .

[34]  David P. Dobkin,et al.  On a general method for maximizing and minimizing among certain geometric problems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[35]  Hanno Lefmann,et al.  An Algorithm for Heilbronn's Problem , 1997, COCOON.

[36]  Kai Jin Maximal Area Triangles in a Convex Polygon , 2017, ArXiv.

[37]  Victor Klee,et al.  Finding the Smallest Triangles Containing a Given Convex Polygon , 1985, J. Algorithms.

[38]  Hanno Lefmann Distributions of Points in d Dimensions and Large k-Point Simplices , 2008, Discret. Comput. Geom..

[39]  Nimrod Megiddo,et al.  Linear time algorithms for some separable quadratic programming problems , 1993, Oper. Res. Lett..

[40]  Chee-Keng Yap,et al.  A polynomial solution for the potato-peeling problem , 1986, Discret. Comput. Geom..

[41]  Gangsong Leng,et al.  Largest parallelotopes contained in simplices , 2000, Discret. Math..

[42]  Marek Lassak,et al.  Approximation of Convex Bodies by Centrally Symmetric Bodies , 1998 .

[43]  Don Zagier,et al.  A Property of Parallelograms Inscribed in Ellipses , 2007, Am. Math. Mon..

[44]  Baruch Schieber,et al.  Computing a minimum-weight k-link path in graphs with the concave Monge property , 1995, SODA '95.

[45]  David M. Mount,et al.  A parallel algorithm for enclosed and enclosing triangles , 1992, Int. J. Comput. Geom. Appl..