Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version)

We present exponential lower bounds on the size of depth-k Boolean circuits for computing certain functions. These results imply that there exists an oracle set A such that, relative to A, all the levels in the polynomial-time hierarchy are distinct, i.e., ΣkP,A is properly contained in Σk+1P,A for all k.

[1]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[2]  R. Solovay,et al.  Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .

[3]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[4]  Theodore P. Baker,et al.  A second step toward the polynomial hierarchy , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[5]  C. Rackoff Relativized questions involving probabilistic algorithms , 1978, STOC 1978.

[6]  Dana Angluin,et al.  On Counting Problems and the Polynomial-Time Hierarchy , 1980, Theor. Comput. Sci..

[7]  John Gill,et al.  Relative to a Random Oracle A, PA != NPA != co-NPA with Probability 1 , 1981, SIAM J. Comput..

[8]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[9]  Michael Sipser,et al.  Borel sets and circuit complexity , 1983, STOC.

[10]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[11]  Leslie G. Valiant,et al.  Exponential lower bounds for restricted monotone circuits , 1983, STOC.

[12]  Andrew C. Yao,et al.  Lower bounds by probabilistic arguments , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[13]  Neil Immerman Languages which capture complexity classes , 1983, STOC '83.

[14]  Timothy J. Long,et al.  Quantitative Relativizations of Complexity Classes , 1984, SIAM J. Comput..

[15]  José L. Balcázar,et al.  Sparse Oracles and Uniform Complexity Classes , 1984, FOCS.

[16]  Ravi B. Boppana,et al.  Threshold functions and bounded deptii monotone circuits , 1984, STOC '84.

[17]  Mihalis Yannakakis,et al.  On monotone formulae with restricted depth , 1984, STOC '84.

[18]  Ravi B. Boppana,et al.  Threshold Functions and Bounded Depth Monotone Circuits , 1986, J. Comput. Syst. Sci..