Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge.

Using a novel electrochemical phase-field model, we question the common belief that Li(X)FePO(4) nanoparticles always separate into Li-rich and Li-poor phases during battery discharge. For small currents, spinodal decomposition or nucleation leads to moving phase boundaries. Above a critical current density (in the Tafel regime), the spinodal disappears, and particles fill homogeneously, which may explain the superior rate capability and long cycle life of nano-LiFePO(4) cathodes.

[1]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[2]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[3]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[4]  P. Prosini,et al.  Fitting of the voltage–Li+ insertion curve of LiFePO4 , 2009 .

[5]  Aziz,et al.  The activation strain tensor: Nonhydrostatic stress effects on crystal-growth kinetics. , 1991, Physical review. B, Condensed matter.

[6]  Hsiao-Ying Shadow Huang,et al.  Strain Accommodation during Phase Transformations in Olivine‐Based Cathodes as a Materials Selection Criterion for High‐Power Rechargeable Batteries , 2007 .

[7]  Damian Burch,et al.  Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. , 2009, Nano letters.

[8]  Rahul Malik,et al.  Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.

[9]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[10]  Chunsheng Wang,et al.  Galvanostatic Intermittent Titration Technique for Phase-Transformation Electrodes , 2010 .

[11]  W. Craig Carter,et al.  Overpotential-Dependent Phase Transformation Pathways in Lithium Iron Phosphate Battery Electrodes , 2010 .

[12]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[13]  E. Bruce Nauman,et al.  Nonlinear diffusion and phase separation , 2001 .

[14]  Rahul Malik,et al.  Particle size dependence of the ionic diffusivity. , 2010, Nano letters.

[15]  M. Armand,et al.  Building better batteries , 2008, Nature.

[16]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .

[17]  Milo R. Dorr,et al.  Anisotropic Phase Boundary Morphology in Nanoscale Olivine Electrode Particles , 2011 .

[18]  R. Huggins Advanced Batteries: Materials Science Aspects , 2008 .

[19]  John K. Tomfohr,et al.  Lecture Notes on Physics , 1879, Nature.

[20]  K. Amine,et al.  High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells , 2005 .

[21]  Krishna Garikipati,et al.  The Role of Coherency Strains on Phase Stability in LixFePO4: Needle Crystallites Minimize Coherency Strain and Overpotential , 2009 .

[22]  Linda F. Nazar,et al.  Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates , 2001 .

[23]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[24]  Phase field theory of heterogeneous crystal nucleation. , 2006, Physical review letters.

[25]  Pedro E. Arce,et al.  A Discharge Model for Phase Transformation Electrodes: Formulation, Experimental Validation, and Analysis , 2007 .

[26]  J. L. Dodd,et al.  Thermodynamic and Kinetic Stability of the Solid Solution Phase in Nanocrystalline LixFePO4 , 2009 .

[27]  B. Singer,et al.  The understanding and elimination of some suspension instabilities in an electrophoretic display , 1978 .

[28]  M. Bazant,et al.  Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. , 2009, Advances in colloid and interface science.

[29]  Stéphanie Belin,et al.  An Electrochemical Cell for Operando Study of Lithium Batteries Using Synchrotron Radiation , 2010 .

[30]  M. Miyayama,et al.  Hydrothermal synthesis of LiFePO4 with small particle size and its electrochemical properties , 2010 .

[31]  Huakun Liu,et al.  Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode , 2009 .

[32]  J A Warren,et al.  Phase field modeling of electrochemistry. I. Equilibrium. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Jean-Marie Tarascon,et al.  The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 , 2005 .

[34]  Dominique Guyomard,et al.  Characterization of the surface of positive electrodes for Li-ion batteries using 7Li MAS NMR , 2008 .

[35]  Robert W. Balluffi,et al.  Kinetics Of Materials , 2005 .

[36]  Peter R. Slater,et al.  Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material , 2005 .

[37]  A. Karma,et al.  Phase-field model of dendritic sidebranching with thermal noise. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[39]  Li-Jun Wan,et al.  LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy‐Storage Devices , 2009, Advanced materials.

[40]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[41]  Atsuo Yamada,et al.  Phase Change in Li x FePO4 , 2005 .

[42]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[43]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[44]  Alain Mauger,et al.  Study of the Li-insertion/extraction process in LiFePO4/FePO4 , 2009 .

[45]  Nathalie Ravet,et al.  Electroactivity of natural and synthetic triphylite , 2001 .

[46]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[47]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[48]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.

[49]  Priya Vashishta,et al.  Shock-induced structural phase transition, plasticity, and brittle cracks in aluminum nitride ceramic. , 2006, Physical review letters.

[50]  Robert W. Balluffi,et al.  Kinetics of Materials: Balluffi/Kinetics , 2005 .

[51]  Ming Tang,et al.  Model for the Particle Size, Overpotential, and Strain Dependence of Phase Transition Pathways in Storage Electrodes: Application to Nanoscale Olivines , 2009 .

[52]  W. Craig Carter,et al.  Size-Dependent Lithium Miscibility Gap in Nanoscale Li1 − x FePO4 , 2007 .

[53]  Gerbrand Ceder,et al.  Electrochemical modeling of intercalation processes with phase field models , 2004 .

[54]  Steven Dargaville,et al.  Predicting Active Material Utilization in LiFePO4 Electrodes Using a Multiscale Mathematical Model , 2010 .

[55]  Yet-Ming Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.