Design and development of a portable exoskeleton based CPM machine for rehabilitation of hand injuries

Human hand is easy to be injured. As physical rehabilitation therapy after a hand operation always takes a long time, the curative effect gets worse and the social and financial hardship with physical deterioration can be caused. A CPM machine is a mechanism based on the rehabilitation theory of continuous passive motion (CPM). To improve rehabilitation results and validate the CPM theory we have developed a portable exoskeleton based CPM machine. The device can be easily attached and also be adjusted to fit different hand sizes. And during the finger's flexion and extension motion the machine can always exert perpendicular forces on the finger phalanges. It can achieve the precise control of scope, force and speed of the moving fingers. Finally based on its mechanical structure, a kinematic validation and simulation including kinematic simulation and dynamic simulation have been carried out.

[1]  Nikolaos G. Tsagarakis,et al.  Occupational and physical therapy using a hand exoskeleton based exerciser , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[2]  Naoki Kawakami,et al.  An Encounter-Type Multi-Fingered Master Hand Using Circuitous Joints , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[3]  Takashi Maeno,et al.  Design and development of two concepts for a 4 DOF portable haptic interface with active and passive multi-point force feedback for the index finger , 2006 .

[4]  Andreas Wege,et al.  Development and control of a hand exoskeleton for rehabilitation of hand injuries , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Grigore C. Burdea,et al.  The Rutgers Master II-new design force-feedback glove , 2002 .

[6]  Yoky Matsuoka,et al.  Comparison of control strategies for an EMG controlled orthotic exoskeleton for the hand , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[7]  N J Giori,et al.  Continuous passive motion (CPM): theory and principles of clinical application. , 2000, Journal of rehabilitation research and development.