Interval oscillation criteria for matrix differential systems with damping

Abstract This paper concerns the oscillation of solutions to Leighton type for the matrix differential system with damping: ( P ( t ) Y ′ ) ′ + R ( t ) Y ′ + Q ( t ) Y = 0 , under the hypothesis: P ( t ) = P ∗ ( t ) > 0 , Q ( t ) = Q ∗ ( t ) and R ( t ) = R ∗ ( t ) are n × n matrices of real valued continuous functions on the interval [ t 0 , ∞ ) .

[1]  Fanwei Meng,et al.  Interval criteria for oscillationof linear Hamiltonian systems , 2004, Math. Comput. Model..

[2]  J. Wong,et al.  On Kamenev-Type Oscillation Theorems for Second-Order Differential Equations With Damping☆ , 2001 .

[3]  I.Sowjanya Kumari,et al.  Oscillation Criteria for Linear Matrix Hamiltonian Systems , 2000 .

[4]  Zhaowen Zheng,et al.  Oscillation criteria of yan type for linear hamiltonian systems , 2003 .

[5]  G J Butler,et al.  Oscillation results for second order differential systems , 1986 .

[6]  Fanwei Meng,et al.  Oscillation results for linear second order matrix differential systems with damping , 2007, Appl. Math. Comput..

[7]  Yuangong Sun,et al.  New oscillation criteria for linear matrix Hamiltonian systems , 2003, Appl. Math. Comput..

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  Angelo B. Mingarelli,et al.  Riccati techniques and variational principles in oscillation theory for linear systems , 1987 .

[10]  N. Parhi,et al.  Oscillation criteria for second order self-adjoint matrix differential equations , 1999 .

[11]  D. Hinton,et al.  Oscillation theory for generalized second-order differential equations , 1980 .

[12]  Fanwei Meng,et al.  Oscillation of linear Hamiltonian systems , 2002 .

[13]  Qingkai Kong,et al.  Kamenev type theorems for second-order matrix differential systems , 1993 .

[14]  Yuan Gong Sun,et al.  Oscillation results for matrix differential systems with damping , 2005, Appl. Math. Comput..

[15]  Ralph Byers,et al.  Weighted means and oscillation conditions for second order matrix differential equations , 1986 .

[16]  Fanwei Meng,et al.  A note on Kamenev type theorems for second order matrix differential systems , 1998 .

[17]  Yun Tang,et al.  Oscillation theorems for self-adjoint matrix Hamiltonian systems involving general means , 2004 .

[18]  Xiaojing Yang Oscillation Criteria for Certain Second-Order Matrix Differential Equations , 2002 .

[19]  Angelo B. Mingarelli,et al.  On a conjecture for oscillation of second-order ordinary differential systems , 1981 .

[20]  Hans G. Kaper,et al.  Oscillation of two-dimensional linear second-order differential systems☆ , 1985 .

[21]  Hans G. Kaper,et al.  Oscillation of linear second-order differential systems , 1984 .

[22]  G. Butler,et al.  Oscillation results for selfadjoint differential systems , 1986 .

[23]  Aurel Wintner,et al.  A criterion of oscillatory stability , 1949 .

[24]  Qingkai Kong,et al.  Interval Criteria for Oscillation of Second-Order Linear Ordinary Differential Equations , 1999 .

[25]  Oscillation of Linear Second Order Matrix Differential Equations , 1998 .

[26]  Fanwei Meng,et al.  Oscillation results for linear Hamiltonian systems , 2002, Appl. Math. Comput..