Concentric spatial extension based particle swarm optimization inspired by brood sorting in ant colonies

In this paper, a concentric spatial extension based particle swarm optimization (CSE-PSO) is proposed by combining the spatial extension with the brood sorting in ant colonies, which leads to a concentric spatial extension scheme for the PSO. The brood sorting in ant colonies endows the particles in PSO with different radii adaptively according their distances to the best position of the swarm. In such a way, the search space in the CSE-PSO is not only enlarged greatly but also the diversity of the swarm in the CSE-PSO is increased accordingly. Meanwhile, a better trade-off between exploration and exploitation in the PSO is achieved by the concentric spatial extension. Simulation results on the fifteen benchmark test functions announced in IEEE CEC'2005 show that the proposed CSE-PSO is not only capable of speeding up the convergence but also improving the performance of global optimizer greatly on all the fifteen benchmark test functions.

[1]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[2]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[3]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[4]  T. Blackwell,et al.  Particle swarms and population diversity , 2005, Soft Comput..

[5]  Riccardo Poli,et al.  On the moments of the sampling distribution of particle swarm optimisers , 2007, GECCO '07.

[6]  Emilio F. Campana,et al.  Dynamic system analysis and initial particles position in Particle Swarm Optimization , 2006 .

[7]  Martyn Amos,et al.  An ant-based algorithm for annular sorting , 2005, 2007 IEEE Congress on Evolutionary Computation.

[8]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[9]  Konstantinos E. Parsopoulos,et al.  UPSO: A Unified Particle Swarm Optimization Scheme , 2019, International Conference of Computational Methods in Sciences and Engineering 2004 (ICCMSE 2004).

[10]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[11]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[12]  Shiu Yin Yuen,et al.  A non-revisiting particle swarm optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[13]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[14]  D. Broomhead,et al.  Exact analysis of the sampling distribution for the canonical particle swarm optimiser and its convergence during stagnation , 2007, GECCO '07.

[15]  James Kennedy,et al.  Defining a Standard for Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[16]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[17]  N. Franks,et al.  Brood sorting by ants: distributing the workload over the work-surface , 1992, Behavioral Ecology and Sociobiology.

[18]  Daniele Peri,et al.  Particle Swarm Optimization: efficient globally convergent modifications , 2006 .

[19]  Kalyan Veeramachaneni,et al.  Fitness-distance-ratio based particle swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[20]  Michael N. Vrahatis,et al.  Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks using the Nash Bargaining Solution , 2005, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[21]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[22]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[23]  Visakan Kadirkamanathan,et al.  Stability analysis of the particle dynamics in particle swarm optimizer , 2006, IEEE Transactions on Evolutionary Computation.

[24]  T. Krink,et al.  Particle swarm optimisation with spatial particle extension , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[25]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[26]  M. Clerc Stagnation Analysis in Particle Swarm Optimisation or What Happens When Nothing Happens , 2006 .

[27]  E. Ozcan,et al.  Particle swarm optimization: surfing the waves , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[28]  Yanchun Liang,et al.  A PARTICLE SWARM OPTIMIZATION-BASED ALGORITHM FOR JOB-SHOP SCHEDULING PROBLEMS , 2005 .

[29]  James Kennedy,et al.  Why does it need velocity? , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[30]  Riccardo Poli,et al.  Analysis of the publications on the applications of particle swarm optimisation , 2008 .

[31]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[32]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[33]  Kevin D. Seppi,et al.  Adaptive diversity in PSO , 2006, GECCO '06.