POD-based optimal control of current profile in tokamak plasmas via nonlinear programming
暂无分享,去创建一个
M.L. Walker | J.R. Ferron | D.A. Humphreys | E. Schuster | C. Xu | J. Dalessio | Y. Ou | T.C. Luce | M. Walker | J. Ferron | E. Schuster | T. Luce | Y. Ou | Chao Xu | J. Dalessio | D. Humphreys
[1] R. Pytlak. Numerical Methods for Optimal Control Problems with State Constraints , 1999 .
[2] Stefan Volkwein,et al. Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.
[3] J. Blum. Numerical simulation and optimal control in plasma physics , 1989 .
[4] D. A. Humphreys,et al. Towards model-based current profile control at DIII-D , 2007 .
[5] M.L. Walker,et al. Extremum-Seeking Finite-Time Optimal Control of Plasma Current Profile at the DIII-D Tokamak , 2007, 2007 American Control Conference.
[6] L. Cordier,et al. Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model , 2005 .
[7] E. Joffrin,et al. A control-oriented model of the current profile in tokamak plasma , 2007 .
[8] P. Neittaanmäki,et al. Optimal Control of Nonlinear Parabolic Systems: Theory: Algorithms and Applications , 1994 .
[9] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[10] K. Kunisch,et al. Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition , 1999 .
[11] Pekka Neittaanmki,et al. Optimal Control from Theory to Computer Programs , 2003 .
[12] P. Holmes,et al. Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .
[13] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.