Latest advances in the manufacturing of 3D rechargeable lithium microbatteries

Recent advances in micro- and nano-electromechanical systems (MEMS/NEMS) technology have led to a niche industry of diverse small-scale devices that include microsensors, micromachines and drug-delivery systems. For these devices, there is an urgent need to develop Micro Lithium Ion Batteries (MLIBs) with dimensions on the scale 1–10 mm3 enabling on-board power delivery. Unfortunately, power limitations are inherent in planar 2D cells and only the advent of 3D designs and microarchitectures will lead to a real breakthrough in the microbattery technology. During the last few years, many efforts to optimise MLIBs were discussed in literature, both in the planar and 3D configurations. This review highlights the importance of 3D microarchitectured electrodes to fabricate batteries that can be device-integrated with exceptionally high specific power density coupled with exquisite miniaturisation. A wide literature overview is provided and recent advances in manufacturing routes to 3D-MLIBs comprising materials synthesis, device formulation, device testing are herein discussed. The advent of simple, economic and easily scalable fabrication processes such as 3D printing will have a decisive role in the growing field of micropower sources and microdevices.

[1]  T. Gustafsson,et al.  Self-supported three-dimensional nanoelectrodes for microbattery applications. , 2009, Nano letters.

[2]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[3]  Alberto Piqué,et al.  Laser-printed thick-film electrodes for solid-state rechargeable Li-ion microbatteries , 2007 .

[4]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[5]  Y. Meng,et al.  Engineering three-dimensionally electrodeposited Si-on-Ni inverse opal structure for high volumetric capacity Li-ion microbattery anode. , 2014, ACS applied materials & interfaces.

[6]  K. Edström,et al.  Galvanostatic electrodeposition of aluminium nano-rods for Li-ion three-dimensional micro-battery current collectors , 2011 .

[7]  Wilhelm Pfleging,et al.  Laser-printing and femtosecond-laser structuring of LiMn2O4 composite cathodes for Li-ion microbatteries , 2014 .

[8]  Chuang Yue,et al.  Fabrication of 3D hexagonal bottle-like Si-SnO2 core-shell nanorod arrays as anode material in on chip micro-lithium-ion-batteries , 2013 .

[9]  K. Edström,et al.  The impact of size effects on the electrochemical behaviour of Cu2O-coated Cu nanopillars for advanced Li-ion microbatteries , 2014 .

[10]  Menachem Nathan,et al.  Progress in three-dimensional (3D) Li-ion microbatteries , 2006 .

[11]  J. Tarascon,et al.  Al Current Collectors for Li-Ion Batteries Made via a Template-Free Electrodeposition Process in Ionic Liquids , 2010 .

[12]  Bruce Dunn,et al.  3-D Microbatteries , 2003 .

[13]  F. L. Cras,et al.  Characterization of all-solid-state Li/LiPONB/TiOS microbatteries produced at the pilot scale , 2010 .

[14]  Ian M. Hutchings,et al.  Direct Writing Technology Advances and Developments , 2008 .

[15]  M. Shikida,et al.  Iop Publishing Journal of Micromechanics and Microengineering a Palmtop-sized Rotary-drive-type Biochemical Analysis System by Magnetic Bead Handling , 2008 .

[16]  Reza Ghodssi,et al.  Virus-enabled silicon anode for lithium-ion batteries. , 2010, ACS nano.

[17]  Alberto Piqué,et al.  Rapid prototyping of micropower sources by laser direct-write , 2004 .

[18]  S. Kim,et al.  Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly. , 2009, ACS nano.

[19]  Alvo Aabloo,et al.  Modelling electrode material utilization in the trench model 3D-microbattery by finite element analysis , 2010 .

[20]  Jian Jiang,et al.  Three-dimensional Ni/SnOx/C hybrid nanostructured arrays for lithium-ion microbattery anodes with enhanced areal capacity. , 2013, ACS applied materials & interfaces.

[21]  A. Stein,et al.  Fabrication of a Fully Infiltrated Three-Dimensional Solid-State Interpenetrating Electrochemical Cell , 2007 .

[22]  R. Kohler,et al.  Designing 3D Conical-Shaped Lithium-Ion Microelectrodes , 2014 .

[23]  Jun Chen,et al.  Nest‐like Silicon Nanospheres for High‐Capacity Lithium Storage , 2007 .

[24]  Yang Liu,et al.  Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries. , 2011, Nano letters.

[25]  P. Ajayan,et al.  Conformal coating of thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional battery applications. , 2011, Nano letters.

[26]  N. Rolland,et al.  Silicon‐Microtube Scaffold Decorated with Anatase TiO2 as a Negative Electrode for a 3D Litium‐Ion Microbattery , 2014 .

[27]  Yi Cui,et al.  Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery Anode , 2011 .

[28]  James R McDonough,et al.  Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. , 2011, Chemical communications.

[29]  H. Munakata,et al.  Fabrication of micro lithium-ion battery with 3D anode and 3D cathode by using polymer wall , 2012 .

[30]  Alberto Piqué,et al.  Laser Transferable Polymer-Ionic Liquid Separator/Electrolytes for Solid-State Rechargeable Lithium-Ion Microbatteries , 2006 .

[31]  Chang-Jin Kim,et al.  Fabrication of High-Aspect-Ratio Electrode Arrays for Three-Dimensional Microbatteries , 2007, Journal of Microelectromechanical Systems.

[32]  Chunlei Wang,et al.  Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery , 2008 .

[33]  Marc Madou,et al.  Fabrication and characterization of three-dimensional carbon electrodes for lithium-ion batteries , 2008 .

[34]  Bethany C Gross,et al.  Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. , 2014, Analytical chemistry.

[35]  Thomas F. Marinis,et al.  Ultrahigh‐Energy‐Density Microbatteries Enabled by New Electrode Architecture and Micropackaging Design , 2010, Advanced materials.

[36]  Phl Peter Notten,et al.  All‐Solid‐State Lithium‐Ion Microbatteries: A Review of Various Three‐Dimensional Concepts , 2011 .

[37]  Herbert Reichl,et al.  Development of near hermetic silicon/glass cavities for packaging of integrated lithium micro batteries , 2009, 2009 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS.

[38]  John A. Rogers,et al.  Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes , 2009, Science.

[39]  Justin C. Lytle,et al.  Multifunctional 3D nanoarchitectures for energy storage and conversion. , 2009, Chemical Society reviews.

[40]  Fred Roozeboom,et al.  3‐D Integrated All‐Solid‐State Rechargeable Batteries , 2007 .

[41]  R. Kohler,et al.  Conical surface structures on model thin-film electrodes and tape-cast electrode materials for lithium-ion batteries , 2013 .

[42]  Tomoyuki Yasukawa,et al.  All-solid-state micro lithium-ion batteries fabricated by using dry polymer electrolyte with micro-phase separation structure , 2007 .

[43]  A. Stein,et al.  Design and functionality of colloidal-crystal-templated materials--chemical applications of inverse opals. , 2013, Chemical Society reviews.

[44]  M. Nathan,et al.  Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS , 2005, Journal of Microelectromechanical Systems.

[45]  M. Nathan,et al.  Advanced materials for the 3D microbattery , 2006 .

[46]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[47]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[48]  Christopher P. Rhodes,et al.  Architectural integration of the components necessary for electrical energy storage on the nanoscale and in 3D. , 2011, Nanoscale.

[49]  Li-Jun Wan,et al.  Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode. , 2012, ACS applied materials & interfaces.

[50]  M. Destro,et al.  High-rate V2O5-based Li-ion thin film polymer cell with outstanding long-term cyclability , 2013 .

[51]  J. Rogers,et al.  Si/Ge double-layered nanotube array as a lithium ion battery anode. , 2012, ACS nano.

[52]  P. Ajayan,et al.  3D nanoporous nanowire current collectors for thin film microbatteries. , 2012, Nano letters.

[53]  Bruce Dunn,et al.  3D Architectured Anodes for Lithium-Ion Microbatteries with Large Areal Capacity , 2014 .

[54]  Daniel Brandell,et al.  A solid state 3-D microbattery based on Cu2Sb nanopillar anodes , 2012 .

[55]  R. Kohler,et al.  Laser-Printed and Processed LiCoO 2 CathodeThick Films for Li-Ion Microbatteries , 2012 .

[56]  Shen J. Dillon,et al.  Microstructural design considerations for Li-ion battery systems , 2012 .

[57]  Paul V Braun,et al.  High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes , 2013, Nature Communications.

[58]  Fred Roozeboom,et al.  High Energy Density All‐Solid‐State Batteries: A Challenging Concept Towards 3D Integration , 2008 .

[59]  Li Lu,et al.  Facile synthesis of chain-like LiCoO2 nanowire arrays as three-dimensional cathode for microbatteries , 2014 .

[60]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[61]  M. Madou,et al.  A novel method for the fabrication of high-aspect ratio C-MEMS structures , 2005, Journal of Microelectromechanical Systems.

[62]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[63]  Ruoxu Lin,et al.  Feasibility of utilizing three-dimensional nanoarchitecture to endow metal sulfides with superior Li+ storage capability , 2014 .

[64]  W. Xiong,et al.  Hierarchical TiO2-B nanowire@α-Fe2O3 nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries , 2014, Nano Research.

[65]  K. Edström,et al.  3D lithium ion batteries{from fundamentals to fabrication , 2011 .

[66]  Reza Ghodssi,et al.  Hierarchical three-dimensional microbattery electrodes combining bottom-up self-assembly and top-down micromachining. , 2012, ACS nano.

[67]  J. Lewis,et al.  3D Printing of Interdigitated Li‐Ion Microbattery Architectures , 2013, Advanced materials.

[68]  E. Peled,et al.  High Power Copper Sulfide Cathodes for Thin-Film Microbatteries , 2009 .

[69]  Yuji Suzuki,et al.  Effect of sol composition on solid electrode/solid electrolyte interface for all-solid-state lithium ion battery , 2011 .

[70]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[71]  T. Gustafsson,et al.  Poly(ether amine) and cross-linked poly(propylene oxide) diacrylate thin-film polymer electrolyte for 3D-microbatteries , 2010 .

[72]  P. Taberna,et al.  MnO2-coated Ni nanorods: Enhanced High Rate Behavior in Pseudo-Capacitive Supercapacitor , 2010 .

[73]  Bruce Dunn,et al.  Three-dimensional electrodes and battery architectures , 2011 .

[74]  W. Lee,et al.  Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. , 2014, Chemical reviews.

[75]  Dominique Guyomard,et al.  Toward fast and cost-effective ink-jet printing of solid electrolyte for lithium microbatteries , 2015 .

[76]  R. Kohler,et al.  Patterning and annealing of nanocrystalline LiCoO2 thin films , 2010 .

[77]  M. Roberts,et al.  Conformal electrodeposition of manganese dioxide onto reticulated vitreous carbon for 3D microbattery applications , 2011 .

[78]  Steve W. Martin,et al.  Microbattery technology overview and associated multilayer encapsulation process , 2009 .

[79]  Hui Wu,et al.  Novel size and surface oxide effects in silicon nanowires as lithium battery anodes. , 2011, Nano letters.

[80]  Yong Woo Cho,et al.  Polymer inkjet printing: Construction of three-dimensional structures at micro-scale by repeated lamination , 2009 .

[81]  Pierre-Louis Taberna,et al.  Nanoarchitectured 3D Cathodes for Li‐Ion Microbatteries , 2010, Advanced materials.

[82]  Bo Liang,et al.  Silicon-based materials as high capacity anodes for next generation lithium ion batteries , 2014 .

[83]  Z. Fu,et al.  Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries , 2013 .

[84]  Bing Sun,et al.  Electrochemical elaboration of electrodes and electrolytes for 3D structured batteries , 2013 .

[85]  Chunsheng Wang,et al.  Architecturing hierarchical function layers on self-assembled viral templates as 3D nano-array electrodes for integrated Li-ion microbatteries. , 2013, Nano letters.

[86]  David Blaauw,et al.  A fully integrated microbattery for an implantable microelectromechanical system , 2008 .

[87]  C. R. Martin,et al.  A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis , 2001 .

[88]  Daniel A. Steingart,et al.  A super ink jet printed zinc–silver 3D microbattery , 2009 .

[89]  D. Brandell,et al.  Designing the 3D-microbattery geometry using the level-set method , 2013 .

[90]  Xingcheng Xiao,et al.  Self-supported single crystalline H2Ti8O17 nanoarrays as integrated three-dimensional anodes for lithium-ion microbatteries. , 2014, ACS applied materials & interfaces.

[91]  Ganesan Nagasubramanian,et al.  Electrical characterization of all-solid-state thin film batteries , 2004 .

[92]  Yung-Cheng Lee,et al.  Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications. , 2012, Nano letters.

[93]  Alberto Piqué,et al.  Li-ion microbatteries generated by a laser direct-write method , 2004 .

[94]  Chuang Yue,et al.  The effects of different core-shell structures on the electrochemical performances of Si-Ge nanorod arrays as anodes for micro-lithium ion batteries. , 2014, ACS applied materials & interfaces.