Asymptotic regularity of Daubechies’ scaling functions
暂无分享,去创建一个
[1] N. Bi,et al. Construction of Compactly SupportedM-Band Wavelets , 1999 .
[2] Ka-Sing Lau,et al. Characterization of L p -solutions for the two-scale dilation equations , 1995 .
[3] Ingrid Daubechies,et al. How Smooth Is the Smoothest Function in a Given Refinable Space , 1996 .
[4] Hans Volkmer. On the regularity of wavelets , 1992, IEEE Trans. Inf. Theory.
[5] L. Villemoes. Wavelet analysis of refinement equations , 1994 .
[6] Albert Cohen,et al. Time-Frequency Localization with Non-Stationary Wavelet Packets , 1996 .
[7] T. Eirola. Sobolev characterization of solutions of dilation equations , 1992 .
[8] Qiyu Sun,et al. Compactly supported refinable distributions in Triebel-Lizorkin spaces and besov spaces , 1999 .
[9] I. Daubechies,et al. A new technique to estimate the regularity of refinable functions , 1996 .
[10] Luoqing Li,et al. CONSTRUCTION OF COMPACTLY SUPPORTED , 2005 .
[11] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[12] Loïc Herve. Construction and regularity of scaling functions , 1995 .
[13] Asymptotic behavior of multiperiodic functions , 1998 .
[14] Hans Volkmer,et al. Asymptotic regularity of compactly supported wavelets , 1995 .
[15] K. Lau,et al. Asymptotic behavior of multiperiodic functions $$G(x) = \prod\limits_{n = 1}^\infty {g(x/2^n )} $$ , 1998 .
[16] I. Daubechies,et al. Non-separable bidimensional wavelets bases. , 1993 .