Analytic Expressions and Bounds for Special Functions and Applications in Communication Theory

This paper is devoted to the derivation of novel analytic expressions and bounds for a family of special functions that are useful in wireless communication theory. These functions are the well-known Nuttall Q-function, incomplete Toronto function, Rice Ie-function, and incomplete Lipschitz-Hankel integrals. Capitalizing on the offered results, useful identities are additionally derived between the above functions and Humbert, Φ1, function as well as for specific cases of the Kampé de Fériet function. These functions can be considered as useful mathematical tools that can be employed in applications relating to the analytic performance evaluation of modern wireless communication systems, such as cognitive radio, cooperative, and free-space optical communications as well as radar, diversity, and multiantenna systems. As an example, new closed-form expressions are derived for the outage probability over nonlinear generalized fading channels, namely, α-η-μ, α-λ-μ, and α-κ-μ as well as for specific cases of the η-μ and λ-μ fading channels. Furthermore, simple expressions are presented for the channel capacity for the truncated channel inversion with fixed rate and corresponding optimum cutoff signal-to-noise ratio for single-antenna and multiantenna communication systems over Rician fading channels. The accuracy and validity of the derived expressions is justified through extensive comparisons with respective numerical results.

[1]  Norman C. Beaulieu,et al.  Prony and Polynomial Approximations for Evaluation of the Average Probability of Error Over Slow-Fading Channels , 2009, IEEE Transactions on Vehicular Technology.

[2]  Paschalis C. Sofotasios,et al.  Upper and lower bounds for the Rice Ie-function , 2011, 2011 Australasian Telecommunication Networks and Applications Conference (ATNAC).

[3]  Michel Daoud Yacoub General Fading Distributions , 2002 .

[4]  B. T. Tan,et al.  Series Representations for Rice's Ie Function , 1984, IEEE Trans. Commun..

[5]  Sonia Aïssa,et al.  Capacity of MIMO Rician fading channels with transmitter and receiver channel state information , 2006, IEEE Transactions on Wireless Communications.

[6]  M.D. Yacoub,et al.  The κ-μ distribution and the η-μ distribution , 2007, IEEE Antennas and Propagation Magazine.

[7]  Pooi Yuen Kam,et al.  Exponential-Type Bounds on the First-Order Marcum Q-Function , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[8]  Rong Li,et al.  Computing and bounding the first-order Marcum Q-function: a geometric approach , 2008, IEEE Transactions on Communications.

[9]  P. Sofotasios,et al.  New analytic results for the incomplete Toronto function and incomplete Lipschitz-Hankel Integrals , 2011, 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011).

[10]  V. L. Deshpande Expansion theorems for the kampe de feriet function , 1971 .

[11]  Marvin K. Simon,et al.  The Nuttall Q function - its relation to the Marcum Q function and its application in digital communication performance evaluation , 2002, IEEE Trans. Commun..

[12]  Rong Li,et al.  WLC10-1: Generic Exponential Bounds and Erfc-Bounds on the Marcum Q-Function via the Geometric Approach , 2006, IEEE Globecom 2006.

[13]  Rory A. Fisher,et al.  The general sampling distribution of the multiple correlation coefficient , 1928 .

[14]  Yoshio Karasawa,et al.  An Intuitive Methodology for Efficient Evaluation of the Nuttall Q-Function and Performance Analysis of Energy Detection in Fading Channels , 2012, IEEE Wireless Communications Letters.

[15]  Árpád Baricz,et al.  Tight bounds for the generalized Marcum Q-function , 2009 .

[16]  Marvin K. Simon,et al.  A new twist on the Marcum Q-function and its application , 1998, IEEE Communications Letters.

[17]  Giuseppe Thadeu Freitas de Abreu,et al.  Jensen-cotes upper and lower bounds on the gaussian Q-function and related functions , 2009, IEEE Transactions on Communications.

[18]  G. Eisenreich,et al.  Exton, H., Handbook of Hypergeometric Integrals. Theory, Applications, Tables, Computer Programs. Chichester, Ellis Horwood Ltd. 1978. Distributors: John Wiley & Sons, 316 S., £ 15.00 , 1979 .

[19]  Harold Exton,et al.  Transformations of certain generalized Kampé de Fériet functions II , 1997 .

[20]  George K. Karagiannidis,et al.  On the Monotonicity of the Generalized Marcum and Nuttall ${Q}$ -Functions , 2007, IEEE Transactions on Information Theory.

[21]  John G. Proakis,et al.  Digital Communications , 1983 .

[22]  Il-Suek Koh,et al.  Uniform bounds of first-order marcum Q-function , 2013, IET Commun..

[23]  David A. Shnidman,et al.  The calculation of the probability of detection and the generalized Marcum Q-function , 1989, IEEE Trans. Inf. Theory.

[24]  坂 耕一郎 Wireless Communication Systems with Multiple Transmit and Receive Antennas , 2001 .

[25]  Dian Gong,et al.  Tight geometric bound for Marcum Q-function , 2008 .

[26]  Paschalis C. Sofotasios,et al.  On the η-µ/gamma and the λ-µ/gamma multipath/shadowing distributions , 2011, 2011 Australasian Telecommunication Networks and Applications Conference (ATNAC).

[27]  Julian Cheng,et al.  Asymptotic Error Rate Analysis of Selection Combining on Generalized Correlated Nakagami-m Channels , 2012, IEEE Transactions on Communications.

[28]  José F. Paris,et al.  Outage probability analysis for η-μ fading channels , 2010, IEEE Communications Letters.

[29]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[30]  José F. Paris,et al.  Analysis of Adaptive MIMO Transmit Beamforming Under Channel Prediction Errors Based on Incomplete Lipschitz–Hankel Integrals , 2009, IEEE Transactions on Vehicular Technology.

[31]  Carl W. Helstrom,et al.  Computing the generalized Marcum Q-function , 1992, IEEE Trans. Inf. Theory.

[32]  Yin Sun,et al.  The generalized Marcum $Q-$function: an orthogonal polynomial approach , 2010, ArXiv.

[33]  A. P. Prudnikov,et al.  Integrals and series of elementary functions , 1981 .

[34]  Paschalis C. Sofotasios,et al.  The α-κ-µ Extreme distribution: Characterizing non-linear severe fading conditions , 2011, 2011 Australasian Telecommunication Networks and Applications Conference (ATNAC).

[35]  Antonio De Maio,et al.  Sidelobe Blanking with Generalized Swerling-Chi Fluctuation Models , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[36]  G. Ferrari,et al.  New bounds for the Marcum Q-function , 2002, IEEE Trans. Inf. Theory.

[37]  Antonia Maria Tulino,et al.  A Theoretical Framework for LMS MIMO Communication Systems Performance Analysis , 2007, IEEE Transactions on Information Theory.

[38]  George K. Karagiannidis,et al.  The area under a receiver operating characteristic curve over enriched multipath fading conditions , 2014, 2014 IEEE Global Communications Conference.

[39]  Jose F. Paris,et al.  Nakagami-q (Hoyt) distribution function with applications , 2009 .

[40]  Mohamed-Slim Alouini,et al.  Digital Communication Over Fading Channels: A Unified Approach to Performance Analysis , 2000 .

[41]  Nasser Saad,et al.  Some formulas for the Appell function F 1 (a, b, b′; c; w, z) , 2012 .

[42]  Yin Sun,et al.  Inequalities for the generalized Marcum Q-function , 2008, Appl. Math. Comput..

[43]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[44]  Nan Ding,et al.  A flexible method to approximate Marcum Q-function based on geometric way of thinking , 2008, 2008 3rd International Symposium on Communications, Control and Signal Processing.

[45]  Steven L. Dvorak,et al.  Applications for incomplete Lipschitz-Hankel integrals in electromagnetics , 1994 .

[46]  R. M. A. P. Rajatheva,et al.  Energy Detection of Unknown Signals in Fading and Diversity Reception , 2011, IEEE Transactions on Communications.

[47]  Yu. A. Brychkov On some properties of the Nuttall function Qμ, ν(a, b) , 2014 .

[48]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[49]  M.D. Yacoub,et al.  The $\alpha$-$\mu$ Distribution: A Physical Fading Model for the Stacy Distribution , 2007, IEEE Transactions on Vehicular Technology.

[50]  Jess Marcum,et al.  A statistical theory of target detection by pulsed radar , 1948, IRE Trans. Inf. Theory.

[51]  Matest M. Agrest,et al.  Theory of incomplete cylindrical functions and their applications , 1971 .

[52]  Juan Manuel Romero-Jerez,et al.  Performance of TAS/MRC Wireless Systems Under Hoyt Fading Channels , 2013, IEEE Transactions on Wireless Communications.

[53]  Yu. A. Brychkov On some properties of the Marcum Q function , 2012 .

[54]  S. Verdú,et al.  Mutual Information and Eigenvalue Distribution of MIMO Ricean Channels , 2004 .

[55]  S. Rice,et al.  Distribution of the Phase Angle Between Two Vectors Perturbed by Gaussian Noise , 1982, IEEE Trans. Commun..

[56]  Shidong Zhou,et al.  On the Monotonicity, Log-Concavity, and Tight Bounds of the Generalized Marcum and Nuttall $Q$-Functions , 2010, IEEE Transactions on Information Theory.

[57]  P. Sofotasios,et al.  Novel expressions for the one and two dimensional Gaussian Q-functions , 2010, 2010 IEEE International Conference on Wireless Information Technology and Systems.

[58]  José F. Paris,et al.  Outage Probability Analysis for MRC in η-μ Fading Channels with Co-Channel Interference , 2012, IEEE Communications Letters.

[59]  Shidong Zhou,et al.  Approximate average bit error probability for DQPSK over fading channels , 2009 .

[60]  P. Sofotasios,et al.  A novel representation for the Nuttall Q-function , 2010, 2010 IEEE International Conference on Wireless Information Technology and Systems.

[61]  Allen R. Miller Incomplete Lipschitz-Hankel integrals of Bessel functions , 1989 .

[62]  Rong Li,et al.  Computing and Bounding the Generalized Marcum Q-Function via a Geometric Approach , 2006, 2006 IEEE International Symposium on Information Theory.

[63]  José F. Paris,et al.  On the Bivariate Nakagami-m Cumulative Distribution Function: Closed-Form Expression and Applications , 2012, IEEE Transactions on Communications.

[64]  José F. Paris,et al.  Connections Between the Generalized Marcum $Q$ -Function and a Class of Hypergeometric Functions , 2013, IEEE Transactions on Information Theory.

[65]  José F. Paris,et al.  Outage probability analysis for Nakagami-q (Hoyt) fading channels under rayleigh interference , 2010, IEEE Transactions on Wireless Communications.

[66]  Pravin Varaiya,et al.  Capacity of fading channels with channel side information , 1997, IEEE Trans. Inf. Theory.

[67]  J. H. Roberts Angle modulation : the theory of system assessment , 1977 .

[68]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[69]  Paschalis C. Sofotasios,et al.  Analytic expressions for the Rice Ie-function and the incomplete Lipschitz-Hankel Integrals , 2011, 2011 Annual IEEE India Conference.

[70]  Rong Li,et al.  New representations and bounds for the generalized marcum Q-function via a geometric approach, and an application , 2010, IEEE Transactions on Communications.

[71]  R. Pawula Relations between Rice Ie-function and Marcum Q-function with applications to error rate calculations , 1995 .

[72]  H. Sagon Numerical calculation of the incomplete Toronto function , 1966 .

[73]  A. Goldsmith,et al.  Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques , 1999, IEEE Transactions on Vehicular Technology.

[74]  Paschalis C. Sofotasios,et al.  Simple and Accurate Approximations for the Two Dimensional Gaussian Q-Function , 2011, 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring).

[75]  Rong Li,et al.  A New Geometric View of the First-Order Marcum Q-Function and Some Simple Tight Erfc-Bounds , 2006, 2006 IEEE 63rd Vehicular Technology Conference.

[76]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[77]  Abbas Jamalipour,et al.  Wireless communications , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[78]  Juei-Chin Shen,et al.  Performance bounds on cyclostationary feature detection over fading channels , 2013, 2013 IEEE Wireless Communications and Networking Conference (WCNC).

[79]  Albert H. Nuttall,et al.  Some integrals involving the QM function (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[80]  Paschalis C. Sofotasios,et al.  Novel expressions for the Marcum and one dimensional Q-functions , 2010, 2010 7th International Symposium on Wireless Communication Systems.

[81]  P. W. Karlsson,et al.  Multiple Gaussian hypergeometric series , 1985 .

[82]  Harold Exton,et al.  Handbook of Hypergeometric Integrals: Theory, Applications, Tables, Computer Programs , 1978 .

[83]  Yin Sun,et al.  New Bounds for the Generalized Marcum $Q$-Function , 2009, IEEE Transactions on Information Theory.

[84]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[85]  H. Vincent Poor,et al.  On the capacity of multiple-antenna systems in Rician fading , 2005, IEEE Transactions on Wireless Communications.

[86]  M.D. Yacoub,et al.  The α-η-μ and α-κ-μ Fading Distributions , 2006, 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications.

[87]  Gustavo Fraidenraich,et al.  The /spl lambda/ - /spl mu/ general fading distribution , 2003, Proceedings of the 2003 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference - IMOC 2003. (Cat. No.03TH8678).

[88]  F. Li,et al.  A new polynomial approximation for Jν Bessel functions , 2006, Appl. Math. Comput..

[89]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[90]  M. M. Agrest Bessel function expansions of incomplete Lipschitz-Hankel integrals , 1971 .

[91]  Shidong Zhou,et al.  Tight Bounds of the Generalized Marcum Q-Function Based on Log-Concavity , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[92]  Peter Swerling,et al.  Probability of detection for fluctuating targets , 1960, IRE Trans. Inf. Theory.

[93]  Justin P. Coon,et al.  An Approximation of the First Order Marcum Q-Function with Application to Network Connectivity Analysis , 2012, IEEE Communications Letters.

[94]  Paschalis C. Sofotasios,et al.  Analytic results for efficient computation of the Nuttall-Q and incomplete Toronto functions , 2013, 2013 International Conference on Advanced Technologies for Communications (ATC 2013).

[95]  Mohamed-Slim Alouini,et al.  Exponential-type bounds on the generalized Marcum Q-function with application to error probability analysis over fading channels , 2000, IEEE Trans. Commun..

[96]  Sofiène Affes,et al.  Performance analysis of mobile radio systems over composite fading/shadowing channels with co-located interference , 2009, IEEE Transactions on Wireless Communications.

[97]  S. O. Rice,et al.  Statistical properties of a sine wave plus random noise , 1948, Bell Syst. Tech. J..