A Universal Bound for the Average Cost of Root Finding

We analyze a path-lifting algorithm for finding an approxim ate zero of a complex polynomial, and show that for any polynomial with distinct r oots in the unit disk, the average number of iterates this algorithm requires is universally bounded by a constant times the log of the condition number. In particular, this bound is independent of the degr e d of the polynomial. The average is taken over initial valueszwith |z| = 1+1/d using uniform measure. Stony Brook IMS Preprint #2009/1 March 2009 CONTENTS

[1]  S. Smale,et al.  Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .

[2]  P. Jonker,et al.  The continuous, desingularized Newton method for meromorphic functions , 1988 .

[3]  On Brillouin Zones , 2000 .

[4]  James A. Bernhard,et al.  The topology of surface mediatrices , 2007 .

[5]  M. Hirsch,et al.  On Algorithms for Solving f(x)=0 , 1979 .

[6]  S. Smale,et al.  Complexity of Bezout’s Theorem II Volumes and Probabilities , 1993 .

[7]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[8]  Michael Shub,et al.  The Newtonian graph of a complex polynomial , 1988 .

[9]  W. Deren,et al.  The theory of Smale's point estimation and its applications , 1995 .

[10]  Myong-Hi Kim On approximate zeros and rootfinding algorithms for a complex polynomial , 1988 .

[11]  J. Hubbard,et al.  How to find all roots of complex polynomials by Newton’s method , 2001 .

[12]  A. Householder The numerical treatment of a single nonlinear equation , 1970 .

[13]  Stanley Ocken Convergence Criteria for Attracting Cycles of Newton's Method , 1998, SIAM J. Appl. Math..

[14]  P. Batra Simultaneous Point Estimates for Newton's Method , 2002, BIT Numerical Mathematics.

[15]  X. Wang ON DOMINATING SEQUENCE METHOD IN THE POINT ESTIMATE AND SMALE THEOREM , 1990 .

[16]  S. Smale,et al.  Complexity of Bezout's theorem IV: probability of success; extensions , 1996 .

[17]  Marc Giusti,et al.  On Location and Approximation of Clusters of Zeros of Analytic Functions , 2005, Found. Comput. Math..

[18]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[19]  Myong-Hi Kim Computation complexity of the euler algorithms for the roots of complex polynomials , 1986 .

[20]  J. Demmel On condition numbers and the distance to the nearest ill-posed problem , 2015 .

[21]  James Renegar,et al.  On the worst-case arithmetic complexity of approximating zeros of polynomials , 1987, J. Complex..

[22]  W. Rogosinski,et al.  The Geometry of the Zeros of a Polynomial in a Complex Variable , 1950, The Mathematical Gazette.

[23]  Myong-Hi Kim,et al.  Implicit Gamma Theorems (I): Pseudoroots and Pseudospectra , 2003, Found. Comput. Math..

[24]  Michael Shub,et al.  Complexity of Bezout’s Theorem VII: Distance Estimates in the Condition Metric , 2009, Found. Comput. Math..

[25]  Michael Shub,et al.  Complexity of Bezout’s Theorem VI: Geodesics in the Condition (Number) Metric , 2007, Found. Comput. Math..

[26]  Stephen Smale,et al.  Complexity of Bezout's Theorem V: Polynomial Time , 1994, Theor. Comput. Sci..

[27]  Prashant Batra,et al.  Newton's method and the Computational Complexity of the Fundamental Theorem of Algebra , 2008, CCA.

[28]  Stephen Smale,et al.  Computational Complexity: On the Geometry of Polynomials and a Theory of Cost: II , 1986, SIAM J. Comput..

[29]  Allan Borodin,et al.  The computational complexity of algebraic and numeric problems , 1975, Elsevier computer science library.

[30]  S. Smale On the efficiency of algorithms of analysis , 1985 .

[31]  S. Smale The fundamental theorem of algebra and complexity theory , 1981 .

[32]  Victor Y. Pan,et al.  Solving a Polynomial Equation: Some History and Recent Progress , 1997, SIAM Rev..