Blank design and strain prediction of automobile stamping parts by an inverse finite element approach

Abstract A new finite element approach is introduced for direct prediction of blank shapes and strain distributions from desired final shapes in sheet metal forming. The approach deals with the geometric compatibility of finite elements, plastic deformation theory, minimization of plastic work with constraints, and a proper initial guess. The algorithm developed is applied to automobile stamping parts such as an oil pan and a front fender in order to confirm its versatility of application by demonstrating the reasonable numerical results in stamping processes. Rapid calculation with this algorithm enables easy determination of various process variables for design of sheet metal forming process.