Generalized global symmetries

A bstractA q-form global symmetry is a global symmetry for which the charged operators are of space-time dimension q; e.g. Wilson lines, surface defects, etc., and the charged excitations have q spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (q = 0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a sub-group). They can also have ’t Hooft anomalies, which prevent us from gauging them, but lead to ’t Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. Our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.

[1]  E. Witten,et al.  Gauge Theory, Ramification, And The Geometric Langlands Program , 2006, hep-th/0612073.

[2]  C. Vafa Modular invariance and discrete torsion on orbifolds , 1986 .

[3]  Jivr'i Hrivn'ak,et al.  On Orbits of the Ring $Z_n^m$ under the Action of the Group $SL(m,Z_n)$ , 2007, 0710.0326.

[4]  T. Banks,et al.  Symmetries and Strings in Field Theory and Gravity , 2010, 1011.5120.

[5]  A. Kapustin,et al.  Topological Field Theory on a Lattice, Discrete Theta-Angles and Confinement , 2013, 1308.2926.

[6]  Edward Witten SL(2;Z) Action On Three-Dimensional Conformal Field Theories With Abelian Symmetry , 2003 .

[7]  Xiao-Gang Wen,et al.  Symmetry protected topological orders and the group cohomology of their symmetry group , 2011, 1106.4772.

[8]  Wilson-'t Hooft operators in four-dimensional gauge theories and S-duality , 2005, hep-th/0501015.

[9]  E. Witten,et al.  Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD , 1994, hep-th/9408099.

[10]  T. S. Tsun Electric–Magnetic Duality , 2006 .

[11]  A. A. Beilinson,et al.  Higher regulators and values of L-functions , 1985 .

[12]  J. McGreevy,et al.  Gauge theory generalization of the fermion doubling theorem. , 2013, Physical review letters.

[13]  O. Aharony,et al.  Reading between the lines of four-dimensional gauge theories , 2013, 1305.0318.

[14]  C. Teitelboim Monopoles of Higher Rank , 1986 .

[15]  Foundations of Rational Quantum Field Theory, I , 1992, hep-th/9211100.

[16]  D-brane charges in five-brane backgrounds , 2001, hep-th/0108152.

[17]  G. Anderson Surgery with Coefficients , 1977 .

[18]  E. Witten,et al.  Rigid Surface Operators , 2008, 0804.1561.

[19]  N. Seiberg,et al.  Comments on the Fayet-Iliopoulos term in field theory and supergravity , 2009, 0904.1159.

[20]  A. Kapustin,et al.  Anomalies of discrete symmetries in various dimensions and group cohomology , 2014, 1404.3230.

[21]  W. Nahm On electric-magnetic duality , 1997 .

[22]  J. Bjorken A Dynamical origin for the electromagnetic field , 1963 .

[23]  E. Witten Geometric Langlands From Six Dimensions , 2009, 0905.2720.

[24]  E. Witten,et al.  Topological gauge theories and group cohomology , 1990 .

[25]  W. Taylor,et al.  Charge lattices and consistency of 6D supergravity , 2011, 1103.0019.

[26]  Heisenberg groups and noncommutative fluxes , 2006, hep-th/0605200.

[27]  James Simons,et al.  Differential characters and geometric invariants , 1985 .

[28]  Nathan Seiberg,et al.  Supercurrents and brane currents in diverse dimensions , 2011, 1106.0031.

[29]  E. Witten,et al.  Phases of = 1 supersymmetric gauge theories , 2003, hep-th/0301006.

[30]  B. Mukhopādhyāẏa,et al.  Signatures of sneutrino dark matter in an extension of the CMSSM , 2016, 1603.08834.

[31]  Shlomo S. Razamat,et al.  Global Properties of Supersymmetric Theories and the Lens Space , 2013, 1307.4381.

[32]  D. Freed Short-range entanglement and invertible field theories , 2014, 1406.7278.

[33]  I. Runkel,et al.  Invertible defects and isomorphisms of rational CFTs , 2010, 1004.4725.

[34]  P. Deligne,et al.  Théorie de Hodge, II , 1971 .

[35]  E. Fradkin,et al.  Phase diagrams of lattice gauge theories with Higgs fields , 1979 .

[36]  I. Brunner,et al.  Discrete Torsion Defects , 2014, 1404.7497.

[37]  C. Teitelboim Gauge invariance for extended objects , 1986 .

[38]  P. Henrard,et al.  First evidence for the two-body charmless baryonic decay $ {B^0}\to p\overline{p} $ , 2013, 1308.0961.

[39]  J. Villain Theory of one- and two-dimensional magnets with an easy magnetization plane. II. The planar, classical, two-dimensional magnet , 1975 .

[40]  Zohar Nussinov,et al.  A symmetry principle for topological quantum order , 2007, cond-mat/0702377.

[41]  A. Kapustin,et al.  Topological Quantum Field Theory, Nonlocal Operators, and Gapped Phases of Gauge Theories , 2013, 1307.4793.

[42]  T. Banks,et al.  FINITE TEMPERATURE BEHAVIOR OF THE LATTICE ABELIAN HIGGS MODEL , 1979 .

[43]  J. Fuchs,et al.  DUALITY AND DEFECTS IN RATIONAL CONFORMAL FIELD THEORY , 2006, hep-th/0607247.

[44]  Zitao Wang,et al.  Fermionic symmetry protected topological phases and cobordisms , 2014, Journal of High Energy Physics.

[45]  Gregory W. Moore,et al.  Lecture Notes for Felix Klein Lectures , 2012 .

[46]  A. Kapustin Symmetry Protected Topological Phases, Anomalies, and Cobordisms: Beyond Group Cohomology , 2014, 1403.1467.

[47]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[48]  A. Kapustin,et al.  Higher symmetry and gapped phases of gauge theories , 2013, 1309.4721.

[49]  Electric-magnetic duality in supersymmetric non-Abelian gauge theories , 1994, hep-th/9411149.

[50]  A. Pritzel,et al.  Topological Model for Domain Walls in (Super-)Yang-Mills Theories , 2014, 1405.4291.

[51]  X. Wen,et al.  Symmetry protected topological orders and the cohomology class of their symmetry group , 2011 .

[52]  A. Kapustin,et al.  Coupling a QFT to a TQFT and duality , 2014, 1401.0740.

[53]  R. Savit Topological excitations in U(1) -invariant theories , 1977 .

[54]  G. Moore,et al.  Framed BPS states , 2010, 1006.0146.

[55]  Pierre Deligne,et al.  Quantum Fields and Strings: A Course for Mathematicians , 1999 .

[56]  J. Whitehead On simply connected, 4-dimensional polyhedra , 1949 .

[57]  N. Seiberg,et al.  Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory , 1994 .

[58]  P. Ramond,et al.  Classical direct interstring action , 1974 .

[59]  N. Seiberg Modifying the sum over topological sectors and constraints on supergravity , 2010, 1005.0002.

[60]  P. Orland Instantons and disorder in antisymmetric tensor gauge fields , 1982 .

[61]  Xiao-Gang Wen,et al.  Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ models and a special group supercohomology theory , 2012, 1201.2648.