Generalized global symmetries
暂无分享,去创建一个
Nathan Seiberg | Anton Kapustin | Davide Gaiotto | A. Kapustin | N. Seiberg | Brian Willett | D. Gaiotto | Brian Willett
[1] E. Witten,et al. Gauge Theory, Ramification, And The Geometric Langlands Program , 2006, hep-th/0612073.
[2] C. Vafa. Modular invariance and discrete torsion on orbifolds , 1986 .
[3] Jivr'i Hrivn'ak,et al. On Orbits of the Ring $Z_n^m$ under the Action of the Group $SL(m,Z_n)$ , 2007, 0710.0326.
[4] T. Banks,et al. Symmetries and Strings in Field Theory and Gravity , 2010, 1011.5120.
[5] A. Kapustin,et al. Topological Field Theory on a Lattice, Discrete Theta-Angles and Confinement , 2013, 1308.2926.
[6] Edward Witten. SL(2;Z) Action On Three-Dimensional Conformal Field Theories With Abelian Symmetry , 2003 .
[7] Xiao-Gang Wen,et al. Symmetry protected topological orders and the group cohomology of their symmetry group , 2011, 1106.4772.
[8] Wilson-'t Hooft operators in four-dimensional gauge theories and S-duality , 2005, hep-th/0501015.
[9] E. Witten,et al. Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD , 1994, hep-th/9408099.
[10] T. S. Tsun. Electric–Magnetic Duality , 2006 .
[11] A. A. Beilinson,et al. Higher regulators and values of L-functions , 1985 .
[12] J. McGreevy,et al. Gauge theory generalization of the fermion doubling theorem. , 2013, Physical review letters.
[13] O. Aharony,et al. Reading between the lines of four-dimensional gauge theories , 2013, 1305.0318.
[14] C. Teitelboim. Monopoles of Higher Rank , 1986 .
[15] Foundations of Rational Quantum Field Theory, I , 1992, hep-th/9211100.
[16] D-brane charges in five-brane backgrounds , 2001, hep-th/0108152.
[17] G. Anderson. Surgery with Coefficients , 1977 .
[18] E. Witten,et al. Rigid Surface Operators , 2008, 0804.1561.
[19] N. Seiberg,et al. Comments on the Fayet-Iliopoulos term in field theory and supergravity , 2009, 0904.1159.
[20] A. Kapustin,et al. Anomalies of discrete symmetries in various dimensions and group cohomology , 2014, 1404.3230.
[21] W. Nahm. On electric-magnetic duality , 1997 .
[22] J. Bjorken. A Dynamical origin for the electromagnetic field , 1963 .
[23] E. Witten. Geometric Langlands From Six Dimensions , 2009, 0905.2720.
[24] E. Witten,et al. Topological gauge theories and group cohomology , 1990 .
[25] W. Taylor,et al. Charge lattices and consistency of 6D supergravity , 2011, 1103.0019.
[26] Heisenberg groups and noncommutative fluxes , 2006, hep-th/0605200.
[27] James Simons,et al. Differential characters and geometric invariants , 1985 .
[28] Nathan Seiberg,et al. Supercurrents and brane currents in diverse dimensions , 2011, 1106.0031.
[29] E. Witten,et al. Phases of = 1 supersymmetric gauge theories , 2003, hep-th/0301006.
[30] B. Mukhopādhyāẏa,et al. Signatures of sneutrino dark matter in an extension of the CMSSM , 2016, 1603.08834.
[31] Shlomo S. Razamat,et al. Global Properties of Supersymmetric Theories and the Lens Space , 2013, 1307.4381.
[32] D. Freed. Short-range entanglement and invertible field theories , 2014, 1406.7278.
[33] I. Runkel,et al. Invertible defects and isomorphisms of rational CFTs , 2010, 1004.4725.
[34] P. Deligne,et al. Théorie de Hodge, II , 1971 .
[35] E. Fradkin,et al. Phase diagrams of lattice gauge theories with Higgs fields , 1979 .
[36] I. Brunner,et al. Discrete Torsion Defects , 2014, 1404.7497.
[37] C. Teitelboim. Gauge invariance for extended objects , 1986 .
[38] P. Henrard,et al. First evidence for the two-body charmless baryonic decay $ {B^0}\to p\overline{p} $ , 2013, 1308.0961.
[39] J. Villain. Theory of one- and two-dimensional magnets with an easy magnetization plane. II. The planar, classical, two-dimensional magnet , 1975 .
[40] Zohar Nussinov,et al. A symmetry principle for topological quantum order , 2007, cond-mat/0702377.
[41] A. Kapustin,et al. Topological Quantum Field Theory, Nonlocal Operators, and Gapped Phases of Gauge Theories , 2013, 1307.4793.
[42] T. Banks,et al. FINITE TEMPERATURE BEHAVIOR OF THE LATTICE ABELIAN HIGGS MODEL , 1979 .
[43] J. Fuchs,et al. DUALITY AND DEFECTS IN RATIONAL CONFORMAL FIELD THEORY , 2006, hep-th/0607247.
[44] Zitao Wang,et al. Fermionic symmetry protected topological phases and cobordisms , 2014, Journal of High Energy Physics.
[45] Gregory W. Moore,et al. Lecture Notes for Felix Klein Lectures , 2012 .
[46] A. Kapustin. Symmetry Protected Topological Phases, Anomalies, and Cobordisms: Beyond Group Cohomology , 2014, 1403.1467.
[47] Edward Witten,et al. Quantum field theory and the Jones polynomial , 1989 .
[48] A. Kapustin,et al. Higher symmetry and gapped phases of gauge theories , 2013, 1309.4721.
[49] Electric-magnetic duality in supersymmetric non-Abelian gauge theories , 1994, hep-th/9411149.
[50] A. Pritzel,et al. Topological Model for Domain Walls in (Super-)Yang-Mills Theories , 2014, 1405.4291.
[51] X. Wen,et al. Symmetry protected topological orders and the cohomology class of their symmetry group , 2011 .
[52] A. Kapustin,et al. Coupling a QFT to a TQFT and duality , 2014, 1401.0740.
[53] R. Savit. Topological excitations in U(1) -invariant theories , 1977 .
[54] G. Moore,et al. Framed BPS states , 2010, 1006.0146.
[55] Pierre Deligne,et al. Quantum Fields and Strings: A Course for Mathematicians , 1999 .
[56] J. Whitehead. On simply connected, 4-dimensional polyhedra , 1949 .
[57] N. Seiberg,et al. Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory , 1994 .
[58] P. Ramond,et al. Classical direct interstring action , 1974 .
[59] N. Seiberg. Modifying the sum over topological sectors and constraints on supergravity , 2010, 1005.0002.
[60] P. Orland. Instantons and disorder in antisymmetric tensor gauge fields , 1982 .
[61] Xiao-Gang Wen,et al. Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ models and a special group supercohomology theory , 2012, 1201.2648.