INFINITESIMAL RIGIDITY OF POLYHEDRA WITH VERTICES IN CONVEX POSITION

Let P C R 3 be a polyhedron. It was conjectured that if P is weakly convex (that is, its vertices lie on the boundary of a strictly convex domain) and decomposable (that is, P can be triangulated without adding new vertices), then it is infinitesimally rigid. We prove this conjecture under a weak additional assumption of codecomposability. The proof relies on a result of independent interest about the Hilbert― Einstein function of a triangulated convex polyhedron. We determine the signature of the Hessian of that function with respect to deformations of the interior edges. In particular, if there are no interior vertices, then the Hessian is negative definite.

[1]  Jaroslaw Wlodarczyk,et al.  Decomposition of Birational Toric Maps in Blow-Ups and Blow-Downs , 1997 .

[2]  Jean-Marc Schlenker,et al.  On weakly convex star-shaped polyhedra , 2007, Discret. Math..

[3]  E. Schönhardt,et al.  Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .

[4]  A. Cauchy Oeuvres complètes: Sur les polygones et les polyèdres (Second Mémoire) , 2009 .

[5]  D. Chand,et al.  On Convex Polyhedra , 1970 .

[6]  H. Gluck Almost all simply connected closed surfaces are rigid , 1975 .

[7]  M. Dehn,et al.  Über die Starrheit konvexer Polyeder , 1916 .

[8]  L. Glaser Geometrical combinatorial topology , 1970 .

[9]  T. Regge General relativity without coordinates , 1961 .

[10]  Lyuba Alboul,et al.  On Flips in Polyhedral Surfaces , 2002, Int. J. Found. Comput. Sci..

[11]  W. B. R. Lickorish Simplicial moves on complexes and manifolds , 1999 .

[12]  Ivan Izmestiev A Variational Proof of Alexandrov’s Convex Cap Theorem , 2008, Discret. Comput. Geom..

[13]  F. Santos Non-connected toric Hilbert schemes , 2002, math/0204044.

[14]  K. Matsuki Birational Geometry of Toric Varieties , 2002 .

[15]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[16]  Jean-Marc Schlenker A Rigidity Criterion for Non-Convex Polyhedra , 2005, Discret. Comput. Geom..

[17]  Robert Connelly,et al.  On the infinitesimal rigidity of weakly convex polyhedra , 2010, Eur. J. Comb..

[18]  DECOMPOSITION OF BIRATIONAL TORIC MAPS IN BLOWUPS AND BLOW-DOWNS , 1996 .

[19]  A. Bobenko,et al.  ALEXANDROV'S THEOREM, WEIGHTED DELAUNAY TRIANGULATIONS, AND MIXED VOLUMES , 2006, math/0609447.

[20]  Francisco Santos Geometric bistellar flips. The setting, the context and a construction , 2006 .