Molecular phylogeny, biogeography, and habitat preference evolution of marsupials.

Marsupials exhibit great diversity in ecology and morphology. However, compared with their sister group, the placental mammals, our understanding of many aspects of marsupial evolution remains limited. We use 101 mitochondrial genomes and data from 26 nuclear loci to reconstruct a dated phylogeny including 97% of extant genera and 58% of modern marsupial species. This tree allows us to analyze the evolution of habitat preference and geographic distributions of marsupial species through time. We found a pattern of mesic-adapted lineages evolving to use more arid and open habitats, which is broadly consistent with regional climate and environmental change. However, contrary to the general trend, several lineages subsequently appear to have reverted from drier to more mesic habitats. Biogeographic reconstructions suggest that current views on the connectivity between Australia and New Guinea/Wallacea during the Miocene and Pliocene need to be revised. The antiquity of several endemic New Guinean clades strongly suggests a substantially older period of connection stretching back to the Middle Miocene and implies that New Guinea was colonized by multiple clades almost immediately after its principal formation.

[1]  F. K. Barker,et al.  THE EARLY DIVERSIFICATION HISTORY OF DIDELPHID MARSUPIALS: A WINDOW INTO SOUTH AMERICA'S “SPLENDID ISOLATION” , 2014, Evolution; international journal of organic evolution.

[2]  B. Llamas,et al.  Ancient mitochondrial genome reveals unsuspected taxonomic affinity of the extinct Chatham duck (Pachyanas chathamica) and resolves divergence times for New Zealand and sub-Antarctic brown teals. , 2014, Molecular phylogenetics and evolution.

[3]  R. Beck An ‘ameridelphian’ marsupial from the early Eocene of Australia supports a complex model of Southern Hemisphere marsupial biogeography , 2012, Naturwissenschaften.

[4]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[5]  D. Stuart-Fox,et al.  Accelerated speciation in colour-polymorphic birds , 2012, Nature.

[6]  A. Haeseler Do we still need supertrees? , 2012, BMC Biology.

[7]  M. Springer,et al.  Phylogenetic relationships of living and recently extinct bandicoots based on nuclear and mitochondrial DNA sequences. , 2012, Molecular phylogenetics and evolution.

[8]  M. Archer,et al.  The Rise of Australian Marsupials: A Synopsis of Biostratigraphic, Phylogenetic, Palaeoecologic and Palaeobiogeographic Understanding , 2012 .

[9]  M. Meyer,et al.  Multilocus Resolution of Phylogeny and Timescale in the Extant Adaptive Radiation of Hawaiian Honeycreepers , 2011, Current Biology.

[10]  T. J. Robinson,et al.  Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification , 2011, Science.

[11]  J. Keogh,et al.  Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota , 2011 .

[12]  A. Iglesias,et al.  The evolution of Patagonian climate and vegetation from the Mesozoic to the present , 2011 .

[13]  Tanja Stadler,et al.  Mammalian phylogeny reveals recent diversification rate shifts , 2011, Proceedings of the National Academy of Sciences.

[14]  R. Beck,et al.  Australia's first fossil marsupial mole (Notoryctemorphia) resolves controversies about their evolution and palaeoenvironmental origins , 2010, Proceedings of the Royal Society B: Biological Sciences.

[15]  J. Brosius,et al.  Tracking Marsupial Evolution Using Archaic Genomic Retroposon Insertions , 2010, PLoS biology.

[16]  M. Springer,et al.  A Phylogeny and Timescale for the Evolution of Pseudocheiridae (Marsupialia: Diprotodontia) in Australia and New Guinea , 2010, Journal of Mammalian Evolution.

[17]  G. Webb,et al.  High diversity Pleistocene rainforest Dasyurid assemblages with implications for the radiation of the dasyuridae , 2009 .

[18]  Chad D. Brock,et al.  Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates , 2009, Proceedings of the National Academy of Sciences.

[19]  S. Jansa,et al.  Phylogenetic Relationships and Classification of Didelphid Marsupials, an Extant Radiation of New World Metatherian Mammals , 2009 .

[20]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[21]  M. Springer,et al.  A phylogeny of Diprotodontia (Marsupialia) based on sequences for five nuclear genes. , 2009, Molecular phylogenetics and evolution.

[22]  Michael Archer,et al.  Palaeoecological analyses of Riversleigh's Oligo-Miocene sites: Implications for Oligo-Miocene climate change in Australia , 2009 .

[23]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[24]  M. Springer,et al.  A phylogeny and timescale for the living genera of kangaroos and kin (Macropodiformes : Marsupialia) based on nuclear DNA sequences , 2008 .

[25]  M. Kearney,et al.  Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota , 2008, Molecular ecology.

[26]  P. Langer Evolutionary History of the Marsupials and an Analysis of Osteological Characters , 2008 .

[27]  M. Springer,et al.  A timescale and phylogeny for "bandicoots" (Peramelemorphia: Marsupialia) based on sequences for five nuclear genes. , 2008, Molecular phylogenetics and evolution.

[28]  R. Beck,et al.  A Dated Phylogeny of Marsupials Using a Molecular Supermatrix and Multiple Fossil Constraints , 2008 .

[29]  Euan G. Ritchie,et al.  Evolution and Biogeography of Australasian Vertebrates , 2008 .

[30]  M. Phillips,et al.  Family-level relationships among the Australasian marsupial "herbivores" (Diprotodontia: Koala, wombats, kangaroos and possums). , 2008, Molecular phylogenetics and evolution.

[31]  Richard H. Ree,et al.  Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. , 2008, Systematic biology.

[32]  L. Palazzesi,et al.  Patagonian vegetation turnovers during the Paleogene-Early Neogene: Origin of arid-adapted floras , 2007, The Botanical Review.

[33]  U. Stenzel,et al.  Parallel tagged sequencing on the 454 platform , 2008, Nature Protocols.

[34]  B. C. Barlow BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS , 2008 .

[35]  M. Springer,et al.  A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes , 2008, Journal of Mammalian Evolution.

[36]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[37]  Kate E. Jones,et al.  The delayed rise of present-day mammals , 1990, Nature.

[38]  M. Benton,et al.  Paleontological evidence to date the tree of life. , 2006, Molecular biology and evolution.

[39]  W. P. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.01 (Build j28) , 2007 .

[40]  M. Westerman,et al.  Molecular relationships of species of Pseudantechinus, Parantechinus and Dasykaluta (Marsupialia : Dasyuridae) , 2007 .

[41]  J. Gatesy,et al.  The supermatrix approach to systematics. , 2007, Trends in ecology & evolution.

[42]  M. Springer,et al.  Phylogenetic relationships of the cuscuses and brushtail possums (Marsupialia : Phalangeridae) using the nuclear gene BRCA1 , 2006 .

[43]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[44]  H. Martin Cenozoic climatic change and the development of the arid vegetation in Australia , 2006 .

[45]  E. Ortiz-Jaureguizar,et al.  Paleoenvironmental evolution of southern South America during the Cenozoic , 2006 .

[46]  D. Penny,et al.  Combined mitochondrial and nuclear DNA sequences resolve the interrelations of the major Australasian marsupial radiations. , 2006, Systematic biology.

[47]  Johannes Müller,et al.  Four well-constrained calibration points from the vertebrate fossil record for molecular clock estimates. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[48]  M. Cloos,et al.  Cenozoic tectonics of New Guinea , 2005 .

[49]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[50]  M. Pagel,et al.  Bayesian estimation of ancestral character states on phylogenies. , 2004, Systematic biology.

[51]  Andy Purvis,et al.  A species-level phylogenetic supertree of marsupials , 2004 .

[52]  Johannes Müller,et al.  Molecular timescales and the fossil record: a paleontological perspective. , 2004, Trends in genetics : TIG.

[53]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[54]  M. Morwood,et al.  Faunal and Floral Migration and Evolution in SE Asia-Australasia , 2001 .

[55]  J. Searle Phylogeography — The History and Formation of Species , 2000, Heredity.

[56]  J. Avise Phylogeography: The History and Formation of Species , 2000 .

[57]  S. Wroe,et al.  The Evolutionary History and Diversity of Australian Mammals , 1999 .

[58]  M. Pagel Inferring evolutionary processes from phylogenies , 1997 .

[59]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[60]  F. Szalay Evolutionary history of the marsupials and an analysis of osteological characters: References , 1995 .

[61]  T. Flannery Mammals of New Guinea , 1990 .

[62]  J. Neigel,et al.  Intraspecific Phylogeography: The Mitochondrial DNA Bridge Between Population Genetics and Systematics , 1987 .

[63]  D. Hodell,et al.  Latest Miocene benthic δ18O changes, global ice volume, sea level and the ‘Messinian salinity crisis’ , 1986, Nature.

[64]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[65]  J. Honacki,et al.  Mammal species of the world : a taxonomic and geographic reference , 1982 .

[66]  D. B. Dow A geological synthesis of Papua New Guinea , 1977 .