The ribosome's response to codon-anticodon mismatches.

[1]  Tina Daviter,et al.  A uniform response to mismatches in codon-anticodon complexes ensures ribosomal fidelity. , 2006, Molecular cell.

[2]  O. Uhlenbeck,et al.  Binding of misacylated tRNAs to the ribosomal A site. , 2005, RNA.

[3]  S. Joseph,et al.  Simulating movement of tRNA into the ribosome during decoding. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  O. Uhlenbeck,et al.  Idiosyncratic tuning of tRNAs to achieve uniform ribosome binding , 2005, Nature Structural &Molecular Biology.

[5]  Rachel Green,et al.  Fidelity in protein synthesis , 2005, Current Biology.

[6]  Marina V. Rodnina,et al.  Structural Basis for the Function of the Ribosomal L7/12 Stalk in Factor Binding and GTPase Activation , 2005, Cell.

[7]  V. Ramakrishnan,et al.  First published online as a Review in Advance on February 25, 2005 STRUCTURAL INSIGHTS INTO TRANSLATIONAL , 2022 .

[8]  R. Green,et al.  An Active Role for tRNA in Decoding Beyond Codon:Anticodon Pairing , 2005, Science.

[9]  Tina Daviter,et al.  A Renewed Focus on Transfer RNA , 2005, Science.

[10]  S. Greive,et al.  Thinking quantitatively about transcriptional regulation , 2005, Nature Reviews Molecular Cell Biology.

[11]  O. Uhlenbeck,et al.  Uniform binding of aminoacylated transfer RNAs to the ribosomal A and P sites. , 2004, Molecular cell.

[12]  Paul F Agris,et al.  The role of modifications in codon discrimination by tRNALysUUU , 2004, Nature Structural &Molecular Biology.

[13]  J. Puglisi,et al.  tRNA selection and kinetic proofreading in translation , 2004, Nature Structural &Molecular Biology.

[14]  M. Rodnina,et al.  Streptomycin interferes with conformational coupling between codon recognition and GTPase activation on the ribosome , 2004, Nature Structural &Molecular Biology.

[15]  M. Rodnina,et al.  Interaction of helix D of elongation factor Tu with helices 4 and 5 of protein L7/12 on the ribosome. , 2004, Journal of molecular biology.

[16]  M. Rodnina,et al.  Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. , 2004, Molecular cell.

[17]  M. Rodnina,et al.  Purine bases at position 37 of tRNA stabilize codon-anticodon interaction in the ribosomal A site by stacking and Mg2+-dependent interactions. , 2004, RNA.

[18]  Scott M Stagg,et al.  Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy , 2003, Nature Structural Biology.

[19]  M. Rodnina,et al.  Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome. , 2003, Journal of molecular biology.

[20]  V. Ramakrishnan,et al.  Insights into the decoding mechanism from recent ribosome structures. , 2003, Trends in biochemical sciences.

[21]  J. Frank,et al.  A twisted tRNA intermediate sets the threshold for decoding. , 2003, RNA.

[22]  V. Ramakrishnan,et al.  Selection of tRNA by the Ribosome Requires a Transition from an Open to a Closed Form , 2002, Cell.

[23]  M. Heel,et al.  Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex , 2002, Nature Structural Biology.

[24]  S. Joseph,et al.  Universally conserved interactions between the ribosome and the anticodon stem-loop of A site tRNA important for translocation. , 2002, Molecular cell.

[25]  Wolfgang Wintermeyer,et al.  GTPase activation of elongation factors Tu and G on the ribosome. , 2002, Biochemistry.

[26]  M. Rodnina,et al.  Structural dynamics of ribosomal RNA during decoding on the ribosome. , 2002, Biochimie.

[27]  O. Uhlenbeck,et al.  The tRNA Specificity of Thermus thermophilus EF-Tu , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Rodnina,et al.  Kinetic mechanism of elongation factor Ts-catalyzed nucleotide exchange in elongation factor Tu. , 2002, Biochemistry.

[29]  O. Uhlenbeck,et al.  Uniform Binding of Aminoacyl-tRNAs to Elongation Factor Tu by Thermodynamic Compensation , 2001, Science.

[30]  M. Rodnina,et al.  The Importance of Structural Transitions of the Switch II Region for the Functions of Elongation Factor Tu on the Ribosome* , 2001, The Journal of Biological Chemistry.

[31]  V. Ramakrishnan,et al.  Recognition of Cognate Transfer RNA by the 30S Ribosomal Subunit , 2001, Science.

[32]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[33]  M. Rodnina,et al.  Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. , 2001, Annual review of biochemistry.

[34]  V. Ramakrishnan,et al.  Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics , 2000, Nature.

[35]  O. Uhlenbeck,et al.  Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. , 2000, Biochemistry.

[36]  T. Pape,et al.  Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome , 2000, Nature Structural Biology.

[37]  D. Turner,et al.  Thermodynamics of single mismatches in RNA duplexes. , 1999, Biochemistry.

[38]  T. Pape,et al.  Induced fit in initial selection and proofreading of aminoacyl‐tRNA on the ribosome , 1999, The EMBO journal.

[39]  T. Pape,et al.  Complete kinetic mechanism of elongation factor Tu‐dependent binding of aminoacyl‐tRNA to the A site of the E.coli ribosome , 1998, The EMBO journal.

[40]  A. Fersht Structure and mechanism in protein science , 1998 .

[41]  R. Brimacombe,et al.  Visualization of elongation factor Tu on the Escherichia coli ribosome , 1997, Nature.

[42]  C. Thomas,et al.  Decoding fidelity at the ribosomal A and P sites: influence of mutations in three different regions of the decoding domain in 16S rRNA. , 1997, Nucleic acids research.

[43]  J. Puglisi,et al.  Structure of the A Site of Escherichia coli 16S Ribosomal RNA Complexed with an Aminoglycoside Antibiotic , 1996, Science.

[44]  Rolf Hilgenfeld,et al.  An α to β conformational switch in EF-Tu , 1996 .

[45]  S Thirup,et al.  Helix unwinding in the effector region of elongation factor EF-Tu-GDP. , 1996, Structure.

[46]  T. Pape,et al.  Initial Binding of the Elongation Factor Tu·GTP·Aminoacyl-tRNA Complex Preceding Codon Recognition on the Ribosome (*) , 1996, The Journal of Biological Chemistry.

[47]  C. Post,et al.  Reexamination of induced fit as a determinant of substrate specificity in enzymatic reactions. , 1995, Biochemistry.

[48]  M. Rodnina,et al.  Codon‐dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. , 1995, The EMBO journal.

[49]  M. Yarus,et al.  tRNA on the Ribosome: a Waggle Theory , 1995 .

[50]  M. Rodnina,et al.  Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. , 1994, Biochemistry.

[51]  R. Hilgenfeld,et al.  Crystal structure of active elongation factor Tu reveals major domain rearrangements , 1993, Nature.

[52]  H. Noller,et al.  Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16 S rRNA. , 1990, Journal of molecular biology.

[53]  M. Yarus,et al.  Transfer RNA structure and coding specificity. II. A D-arm tertiary interaction that restricts coding range. , 1989, Journal of molecular biology.

[54]  M Yarus,et al.  Transfer RNA structure and coding specificity. I. Evidence that a D-arm mutation reduces tRNA dissociation from the ribosome. , 1989, Journal of molecular biology.

[55]  Wittmann Hg Ribosomes and protein biosynthesis , 1989 .

[56]  Daniel Herschlag,et al.  The role of induced fit and conformational changes of enzymes in specificity and catalysis , 1988 .

[57]  M. Yarus,et al.  The translational efficiency of tRNA is a property of the anticodon arm. , 1986, The Journal of biological chemistry.

[58]  I. D. Algranati,et al.  Effect of polyamines on translation fidelity in vivo. , 1986, European journal of biochemistry.

[59]  Control of basal-level codon misreading in Escherichia coli. , 1984, Biochemical and biophysical research communications.

[60]  R. Thompson,et al.  The accuracy of protein biosynthesis is limited by its speed: high fidelity selection by ribosomes of aminoacyl-tRNA ternary complexes containing GTP[gamma S]. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[61]  R. Ivell,et al.  Modulation by monovalent and divalent cations of the guanosine-5'-triphosphatase activity dependent on elongation factor Tu. , 1981, Biochemistry.

[62]  R. Thompson,et al.  Effect of Mg2+ concentration, polyamines, streptomycin, and mutations in ribosomal proteins on the accuracy of the two-step selection of aminoacyl-tRNAs in protein biosynthesis. , 1981, The Journal of biological chemistry.

[63]  D. Crothers,et al.  Studies of the complex between transfer RNAs with complementary anticodons. I. Origins of enhanced affinity between complementary triplets. , 1976, Journal of molecular biology.

[64]  N. Seeman,et al.  Sequence-specific Recognition of Double Helical Nucleic Acids by Proteins (base Pairs/hydrogen Bonding/recognition Fidelity/ion Binding) , 2022 .

[65]  J. Ninio Kinetic amplification of enzyme discrimination. , 1975, Biochimie.

[66]  J. Hopfield Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[67]  D. Hirsh Tryptophan transfer RNA as the UGA suppressor. , 1971, Journal of molecular biology.