A Collection of Topological Types of Nanoclusters and Its Application to Icosahedron-Based Intermetallics.

In this study, we carried out a topological and geometrical analysis of more than 27 000 intermetallics. More than 2000 topologically different nanoclusters were determined and stored in an electronic database as the Topological Types of Nanoclusters (TTN) collection. Besides the topology of the nanoclusters, the TTN collection contains the information on their occurrence as well as on motifs of their assembly in intermetallics; it is included to the set of the ToposPro topological collections. With the TTN collection we analyzed the topology of local binding and overall topological motifs in the 1528 intermetallics assembled with icosahedron-based building units. Taking the TTN collection as a starting point, we present the concept of a knowledge database and an expert system that can be used to process a huge set of data to find general regularities in the crystal structures of intermetallics and to predict some of their features.

[1]  V. Blatov Nanocluster analysis of intermetallic structures with the program package TOPOS , 2012, Structural Chemistry.

[2]  G. Cordier,et al.  Crystal structure of ytterbium silver (2/7), Yb2Ag7 , 1991 .

[3]  V. Blatov,et al.  New types of multishell nanoclusters with a Frank-Kasper polyhedral core in intermetallics. , 2011, Inorganic chemistry.

[4]  P. Damasceno,et al.  Predictive Self-Assembly of Polyhedra into Complex Structures , 2012, Science.

[5]  T. Fässler,et al.  BaNi2Ge and Ca4Ni4Ge3 – Two layered Structures with $\rm ^2_\infty$[Ni2Ge] and, $\rm ^2_\infty$[Ni4Ge3] Networks , 2010 .

[6]  G. Kreiner,et al.  A new description of Samson's Cd3 Cu4 and a model of icosahedral i-CdCu , 1997 .

[7]  David J. Wales,et al.  Global minima of transition metal clusters described by Finnis–Sinclair potentials: A comparison with semi-empirical molecular orbital theory , 2009 .

[8]  V. Blatov,et al.  Topology of 2-Periodic Coordination Networks: Toward Expert Systems in Crystal Design , 2013 .

[9]  T. Fässler,et al.  SrNi2Ge and SrNi3Ge2 – Two Related Hexagonal Germanides† , 2008 .

[10]  S. Samson The crsytal structure of the phase β Mg2Al3 , 1965 .

[11]  L. Pauling,et al.  The crystal structure of the metallic phase Mg32(Al, Zn)49 , 1957 .

[12]  Icosahedral Li clusters in the structures of Li{sub 33.3}Ba{sub 13.1}Ca{sub 3} and Li{sub 18.9}Na{sub 8.3}Ba{sub 15.3} , 2007 .

[13]  P. Jana,et al.  Au10Mo4Zn89: a fully ordered complex intermetallic compound analyzed by TOPOS. , 2013, Inorganic chemistry.

[14]  L. D. Calvert,et al.  The crystal structure of Ag8Ca3 , 1964 .

[15]  M. Sakata,et al.  Covalent bonds and their crucial effects on pseudogap formation in α-Al(Mn, Re)Si icosahedral quasicrystalline approximant , 2003 .

[16]  B. Harbrecht,et al.  Al69Ta39 : a new variant of a face-centred cubic giant cell structure , 1994 .

[17]  R. Pöttgen,et al.  The Rare Earth Metal-Rich Indides RE4RhIn (RE = Gd–Tm, Lu) , 2007 .

[18]  J. Soler,et al.  Trends in the structure and bonding of noble metal clusters , 2004 .

[19]  R. Pöttgen,et al.  Structure, chemical bonding and properties of Sr2Rh2In3 and Sr3Ir4Sn4 , 2000 .

[20]  W. B. Pearson,et al.  New refinements of the γ brass type structures Cu5Zn8, Cu5Cd8 and Fe3Zn10 , 1974 .

[21]  M. L. Fornasini,et al.  The crystal structure of Ca2Cu2Ga, CaCuGa, SrCu2Ga and BaCu2Ga , 1988 .

[22]  Wing-Ki Liu,et al.  Asynchronous multicanonical basin hopping method and its application to cobalt nanoclusters. , 2005, The Journal of chemical physics.

[23]  H. Wallbaum Ergebnisse der röntgenographischen Strukturuntersuchung von Legierungen der Zusammensetzung AB2 der Eisenmetalle mit Titan, Zirkon, Niob und Tantal (1). , 1941 .

[24]  Jonathan Doye,et al.  Global minima for transition metal clusters described by Sutton–Chen potentials , 1997 .

[25]  Michael O'Keeffe,et al.  Crystal nets as graphs: Terminology and definitions , 2005 .

[26]  A. Mar,et al.  Ternary rare-earth titanium antimonides: Phase equilibria in the RE–Ti–Sb (RE=La, Er) systems and crystal structures of RE2Ti7Sb12 (RE=La, Ce, Pr, Nd) and RETi3(SnxSb1–x)4 (RE=Nd, Sm) , 2007 .

[27]  J. Corbett,et al.  Development of an icosahedral quasicrystal and two approximants in the Ca-Au-Sn system: syntheses and structural analyses. , 2010, Inorganic chemistry.

[28]  V. Blatov,et al.  γ-Brass polyhedral core in intermetallics: the nanocluster model. , 2013, Inorganic chemistry.

[29]  P. J. Black,et al.  The refinement of the Co2Al5 structures , 1961 .

[30]  R. Hoffmann,et al.  Interpenetrating polar and nonpolar sublattices in intermetallics: the NaCd(2) structure. , 2007, Angewandte Chemie.

[31]  B. Harbrecht,et al.  τ-Al2.9Ta2.7V1.4, a new type of pentagonal antiprismatic columnar structure , 1996 .

[32]  H. Deiseroth,et al.  K2Hg7 und Rb2Hg7, zwei Vertreter eines neuen Strukturtyps binärer intermetallischer Verbindungen , 1999 .

[33]  W. Steurer The Samson phase, β-Mg2Al3, revisited , 2007 .

[34]  M. O'keeffe,et al.  The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.

[35]  Lead clusters: different potentials, different structures , 2004, cond-mat/0405234.

[36]  T. Norin,et al.  X-Ray and Neutron Diffraction Studies on Gamma-Ni, Zn and Gamma-Fe, Zn. , 1968 .

[37]  H. Nyman,et al.  On the structure of Mn5Si3, Th6Mn23 and γ‐brass , 1979 .

[38]  J. Taylor,et al.  Quasicrystals: The View from Stockholm , 2013 .

[39]  A. P. Shevchenko,et al.  Applied Topological Analysis of Crystal Structures with the Program Package ToposPro , 2014 .

[40]  G. Miller,et al.  On the structural chemistry of gamma-brasses: two different interpenetrating networks in ternary F-cell Pd-Zn-Al phases. , 2010, Chemistry.

[41]  K. Cenzual,et al.  Nested polyhedra units: a geometrical concept for describing complicated cubic structures , 1981 .

[42]  S. Ranganathan,et al.  The γ-brass structure and the Boerdijk-Coxeter helix , 2004 .

[43]  P. Damasceno,et al.  Crystalline assemblies and densest packings of a family of truncated tetrahedra and the role of directional entropic forces. , 2011, ACS nano.

[44]  G. Chin,et al.  Note on the Hf-Co phase diagram , 1978 .

[45]  S. Agrestini,et al.  Sr(2)Ni(3)--a strontium subnickelide? , 2011, Chemistry.

[46]  V. Blatov,et al.  Nanocluster model of intermetallic compounds with giant unit cells: beta, beta'-Mg(2)Al(3) polymorphs. , 2010, Inorganic chemistry.

[47]  E. Hellner,et al.  Cluster of framework considerations for the structures of Tl7Sb2, α‐Mn, Cu5Zn8 and their variants Li22Si51, Cu41Sn11, Sm11Cd45, Mg6Pd and Na6Tl with octuple unit cells , 1981 .

[48]  J. Adam,et al.  The crystal structure of WAl12, MoAl12 and (Mn, Cr)Al12 , 1954 .

[49]  V. Blatov,et al.  Intermetallic compounds of the NaCd2 family perceived as assemblies of nanoclusters , 2009 .

[50]  H. Trebin Quasicrystals : structure and physical properties , 2003 .

[51]  K. Range,et al.  Zur kenntnis des β-Mangan-typs: Hochdrucksynthese und strukturverfeinerung von AlAu4 , 1990 .

[52]  A. Simon,et al.  Crystal structure of Ag7Ca2 — a new intermetallic structure type , 1995 .

[53]  A. Mackay A dense non-crystallographic packing of equal spheres , 1962 .

[54]  V. Blatov,et al.  Nanoclusters based on pentagondodecahedra with shells in the form of D32, D42, and D50 deltahedra in crystal structures of intermetallic compounds , 2012 .

[55]  Qibin Yang,et al.  An alternative description of the structure of NaCd2 , 1987 .

[56]  S. Samson Crystal Structure of NaCd2 , 1962, Nature.