Extended Riemann-Liouville fractional derivative operator and its applications

Many authors have introduced and investigated certain extended fractional derivative operators. The main object of this paper is to give an extension of the Riemann-Liouville fractional derivative operator with the extended Beta function given by Srivastava et al. [22] and investigate its various (potentially) useful and (presumably) new properties and formulas, for example, integral representations, Mellin transforms, generating functions, and the extended fractional derivative formulas for some familiar functions. c

[1]  J. Hammond On General Differentiation , 1880 .

[2]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .

[3]  Thomas J. Osler,et al.  Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite Series , 1970 .

[4]  M. Ali Özarslan,et al.  Some generating relations for extended hypergeometric functions via generalized fractional derivative operator , 2010, Math. Comput. Model..

[5]  Delfim F. M. Torres,et al.  Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives , 2010, 1007.2937.

[6]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[7]  A. M. Mathai,et al.  The H-Function: Theory and Applications , 2009 .

[8]  A. Kilbas H-Transforms: Theory and Applications , 2004 .

[9]  M. Ali Özarslan,et al.  Extension of gamma, beta and hypergeometric functions , 2011, J. Comput. Appl. Math..

[10]  L. M. B. C. Campos,et al.  On a Systematic Approach to some Properties of Special Functions , 1986 .

[11]  Jidong Zhao Positive solutions for a class of q -fractional boundary value problems with p -Laplacian , 2015 .

[12]  Richard L. Magin,et al.  Fractional calculus models of complex dynamics in biological tissues , 2010, Comput. Math. Appl..

[13]  Changpin Li,et al.  Numerical approaches to fractional calculus and fractional ordinary differential equation , 2011, J. Comput. Phys..

[14]  V. Kiryakova Generalized Fractional Calculus and Applications , 1993 .

[15]  Asghar Qadir,et al.  Extension of Euler's beta function , 1997 .

[16]  T. Osler Leibniz rule, the chain rule, and taylor's theorme for fractional derivatives , 1971 .

[17]  L. Campos On rules of derivation with complex order for analytic and branched functions , 1986 .

[18]  Hari M. Srivastava,et al.  Generating functions for the generalized Gauss hypergeometric functions , 2014, Appl. Math. Comput..

[19]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[20]  H. Srivastava,et al.  THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS. NORTH-HOLLAND MATHEMATICS STUDIES , 2006 .

[21]  L. M. B. C. Campos,et al.  On a Concept of Derivative of Complex Order with Applications to Special Functions , 1984 .

[22]  Hari M. Srivastava,et al.  Extended hypergeometric and confluent hypergeometric functions , 2004, Appl. Math. Comput..

[23]  M. A. Chaudhry,et al.  On a Class of Incomplete Gamma Functions with Applications , 2001 .

[24]  H. Srivastava,et al.  Zeta and q-Zeta Functions and Associated Series and Integrals , 2011 .

[25]  Allen R. Miller Remarks on a generalized beta function , 1998 .

[26]  A. W. Kemp,et al.  A treatise on generating functions , 1984 .

[27]  Min-Jie Luo,et al.  Some results on the extended beta and extended hypergeometric functions , 2014, Appl. Math. Comput..