Universality of Enzymatic Numerical P systems

This paper provides the proof that Enzymatic Numerical P systems with deterministic, but parallel, execution model are universal, even when the production functions used are polynomials of degree 1. This extends previous known results and provides the optimal case in terms of polynomial degree.

[1]  J. Davenport Editor , 1960 .

[2]  Gheorghe Paun,et al.  On the power of enzymatic numerical P systems , 2012, Acta Informatica.

[3]  Grzegorz Rozenberg,et al.  Cornerstones of undecidability , 1994, Prentice Hall International Series in Computer Science.

[4]  Ioan Dumitrache,et al.  Robot Localization Implemented with Enzymatic Numerical P Systems , 2012, Living Machines.

[5]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..

[6]  Catalin Buiu,et al.  Development of membrane controllers for mobile robots , 2012, Inf. Sci..

[7]  Catalin Buiu,et al.  Using enzymatic numerical P systems for modeling mobile robot controllers , 2011, Natural Computing.

[8]  Erik Massop Hilbert's tenth problem , 2012 .

[9]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[10]  Gheorghe Paun,et al.  Membrane Computing and Economics: Numerical P Systems , 2006, Fundam. Informaticae.

[11]  Catalin Buiu,et al.  Enzymatic numerical P systems - a new class of membrane computing systems , 2010, 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA).

[12]  Gheorghe Paun,et al.  The Oxford Handbook of Membrane Computing , 2010 .