Vertex Cover and Feedback Vertex Set Above and Below Structural Guarantees

Vertex Cover parameterized by the solution size k is the quintessential fixed-parameter tractable problem. FPT algorithms are most interesting when the parameter is small. Several lower bounds on k are well-known, such as the maximum size of a matching. This has led to a line of research on parameterizations of Vertex Cover by the difference of the solution size k and a lower bound. The most prominent cases for such lower bounds for which the problem is FPT are the matching number or the optimal fractional LP solution. We investigate parameterizations by the difference between k and other graph parameters including the feedback vertex number, the degeneracy, cluster deletion number, and treewidth with the goal of finding the border of fixed-parameter tractability for said difference parameterizations. We also consider similar parameterizations of the Feedback Vertex Set problem.

[1]  David G. Harris,et al.  A faster algorithm for Vertex Cover parameterized by solution size , 2022, ArXiv.

[2]  Marin Bougeret,et al.  Bridge-Depth Characterizes which Structural Parameterizations of Vertex Cover Admit a Polynomial Kernel , 2020, ICALP.

[3]  Yoichi Iwata,et al.  Improved Analysis of Highest-Degree Branching for Feedback Vertex Set , 2019, Algorithmica.

[4]  Eva-Maria C. Hols,et al.  Elimination Distances, Blocking Sets, and Kernels for Vertex Cover , 2019, STACS.

[5]  Fedor V. Fomin,et al.  Kernelization: Theory of Parameterized Preprocessing , 2019 .

[6]  Saket Saurabh,et al.  Polynomial Kernels for Vertex Cover Parameterized by Small Degree Modulators , 2018, Theory of Computing Systems.

[7]  Saket Saurabh,et al.  Polynomial Kernels for Vertex Cover Parameterized by Small Degree Modulators , 2018, Theory of Computing Systems.

[8]  Martin Milanic,et al.  On two extensions of equimatchable graphs , 2016, Discret. Optim..

[9]  Stefan Kratsch,et al.  A randomized polynomial kernelization for Vertex Cover with a smaller parameter , 2016, ESA.

[10]  Geevarghese Philip,et al.  Raising The Bar For Vertex Cover: Fixed-parameter Tractability Above A Higher Guarantee , 2015, SODA.

[11]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[12]  Dieter Rautenbach,et al.  Maximum induced matchings close to maximum matchings , 2015, Theor. Comput. Sci..

[13]  R. Downey,et al.  Fundamentals of Parameterized Complexity , 2013, Texts in Computer Science.

[14]  B. Jansen The Power of Data Reduction : Kernels for Fundamental Graph Problems , 2013 .

[15]  Saket Saurabh,et al.  On the Hardness of Losing Width , 2013, Theory of Computing Systems.

[16]  Wayne Goddard,et al.  Independent domination in graphs: A survey and recent results , 2013, Discret. Math..

[17]  Stefan Kratsch,et al.  Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..

[18]  Saket Saurabh,et al.  Faster Parameterized Algorithms Using Linear Programming , 2012, ACM Trans. Algorithms.

[19]  Stefan Kratsch,et al.  Representative Sets and Irrelevant Vertices: New Tools for Kernelization , 2011, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[20]  Michal Pilipczuk,et al.  On the Hardness of Losing Width , 2011, Theory of Computing Systems.

[21]  Michal Pilipczuk,et al.  On multiway cut parameterized above lower bounds , 2011, TOCT.

[22]  Hans L. Bodlaender,et al.  Vertex Cover Kernelization Revisited , 2010, Theory of Computing Systems.

[23]  Ge Xia,et al.  Improved upper bounds for vertex cover , 2010, Theor. Comput. Sci..

[24]  Barry O'Sullivan,et al.  Almost 2-SAT is Fixed-Parameter Tractable , 2008, J. Comput. Syst. Sci..

[25]  Kathie Cameron,et al.  The graphs with maximum induced matching and maximum matching the same size , 2005, Discret. Math..

[26]  Erik D. Demaine,et al.  Approximation algorithms for classes of graphs excluding single-crossing graphs as minors , 2004, J. Comput. Syst. Sci..

[27]  Venkatesh Raman,et al.  Parameterized complexity of finding subgraphs with hereditary properties , 2000, Theor. Comput. Sci..

[28]  Meena Mahajan,et al.  Parametrizing Above Guaranteed Values: MaxSat and MaxCut , 1997, Electron. Colloquium Comput. Complex..

[29]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[30]  Robin Thomas,et al.  Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.

[31]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..

[32]  M. Plummer WELL-COVERED GRAPHS: A SURVEY , 1993 .

[33]  Ramesh S. Sankaranarayana,et al.  Complexity results for well-covered graphs , 1992, Networks.

[34]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[35]  Fanica Gavril,et al.  Testing for Equality Between Maximum Matching and Minimum Node Covering , 1977, Inf. Process. Lett..

[36]  René van Bevern,et al.  The Graph Parameter Hierarchy , 2019 .

[37]  Marc Demange,et al.  Efficient recognition of equimatchable graphs , 2014, Inf. Process. Lett..

[38]  Jane Zundel MATCHING THEORY , 2011 .

[39]  Erik D. Demaine,et al.  Linearity of grid minors in treewidth with applications through bidimensionality , 2008, Comb..

[40]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[41]  V. Chvátal,et al.  A Note on Well-Covered Graphs , 1993 .

[42]  M. Plummer Some covering concepts in graphs , 1970 .