A mannose-sensing AraC-type transcriptional activator regulates cell–cell aggregation of Vibrio cholerae

[1]  Seung Hwan Lee,et al.  Functional dissection of the phosphotransferase system provides insight into the prevalence of Faecalibacterium prausnitzii in the host intestinal environment. , 2021, Environmental microbiology.

[2]  I. Okeke,et al.  Bacteria autoaggregation: how and why bacteria stick together , 2021, Biochemical Society transactions.

[3]  Y. Seok,et al.  Vibrio cholerae FruR facilitates binding of RNA polymerase to the fru promoter in the presence of fructose 1-phosphate , 2021, Nucleic acids research.

[4]  B. Erni,et al.  The mannose phosphotransferase system (Man-PTS) - Mannose transporter and receptor for bacteriocins and bacteriophages. , 2020, Biochimica et biophysica acta. Biomembranes.

[5]  Jun Zhu,et al.  Pathogenicity and virulence regulation of Vibrio cholerae at the interface of host-gut microbiome interactions , 2020, Virulence.

[6]  Joonwon Kim,et al.  Sugar-mediated regulation of a c-di-GMP phosphodiesterase in Vibrio cholerae , 2019, Nature Communications.

[7]  M. Waldor,et al.  A Bacterial Pathogen Senses Host Mannose to Coordinate Virulence , 2019, iScience.

[8]  Jihee Yoon,et al.  Polar landmark protein HubP recruits flagella assembly protein FapA under glucose limitation in Vibrio vulnificus , 2019, Molecular microbiology.

[9]  A. Camilli,et al.  cAMP Receptor Protein Controls Vibrio cholerae Gene Expression in Response to Host Colonization , 2018, mBio.

[10]  Y. Seok,et al.  Rsd balances (p)ppGpp level by stimulating the hydrolase activity of SpoT during carbon source downshift in Escherichia coli , 2018, Proceedings of the National Academy of Sciences.

[11]  A. B. Dalia,et al.  Systematic genetic dissection of PTS in Vibrio cholerae uncovers a novel glucose transporter and a limited role for PTS during infection of a mammalian host , 2017, Molecular microbiology.

[12]  Simon F Brunner,et al.  Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli , 2017, Molecular systems biology.

[13]  I. Kounatidis,et al.  Exploring interactions between pathogens and the Drosophila gut. , 2016, Developmental and comparative immunology.

[14]  Gabriela I. Guzmán,et al.  Systems assessment of transcriptional regulation on central carbon metabolism by Cra and CRP , 2016, bioRxiv.

[15]  Soyoung Park,et al.  Glucose induces delocalization of a flagellar biosynthesis protein from the flagellated pole , 2016, Molecular microbiology.

[16]  Anisia J. Silva,et al.  Vibrio cholerae Biofilms and Cholera Pathogenesis , 2016, PLoS neglected tropical diseases.

[17]  Y. Seok,et al.  Histidine phosphocarrier protein regulates pyruvate kinase A activity in response to glucose in Vibrio vulnificus , 2015, Molecular microbiology.

[18]  Konrad U. Förstner,et al.  Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation , 2015, Proceedings of the National Academy of Sciences.

[19]  P. Watnick,et al.  The acetate switch of an intestinal pathogen disrupts host insulin signaling and lipid metabolism. , 2014, Cell host & microbe.

[20]  Jun Zhu,et al.  Host Intestinal Signal-Promoted Biofilm Dispersal Induces Vibrio cholerae Colonization , 2014, Infection and Immunity.

[21]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[22]  Ronald K. Taylor,et al.  Cholera: Environmental Reservoirs and Impact on Disease Transmission. , 2013, Microbiology spectrum.

[23]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[24]  J. Altenbuchner,et al.  The Bacillus subtilis mannose regulator, ManR, a DNA‐binding protein regulated by HPr and its cognate PTS transporter ManP , 2013, Molecular microbiology.

[25]  P. Watnick,et al.  Glucose-Specific Enzyme IIA Has Unique Binding Partners in The Vibrio cholerae Biofilm , 2012, mBio.

[26]  M. Blokesch Chitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repression. , 2012, Environmental microbiology.

[27]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[28]  Jonathan Livny,et al.  RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. , 2011, Cell host & microbe.

[29]  R. Robins-Browne,et al.  Control of bacterial virulence by AraC-like regulators that respond to chemical signals. , 2011, Trends in microbiology.

[30]  B. Arulanandam,et al.  Mannose-Containing Oligosaccharides of Non-Specific Human Secretory Immunoglobulin A Mediate Inhibition of Vibrio cholerae Biofilm Formation , 2011, PloS one.

[31]  P. Watnick,et al.  The Phosphoenolpyruvate Phosphotransferase System Regulates Vibrio cholerae Biofilm Formation through Multiple Independent Pathways , 2010, Journal of bacteriology.

[32]  J. Altenbuchner,et al.  Characterization of a Mannose Utilization System in Bacillus subtilis , 2010, Journal of bacteriology.

[33]  P. Watnick,et al.  Vibrio cholerae Phosphoenolpyruvate Phosphotransferase System Control of Carbohydrate Transport, Biofilm Formation, and Colonization of the Germfree Mouse Intestine , 2010, Infection and Immunity.

[34]  O. Kuipers,et al.  Mechanisms and Evolution of Control Logic in Prokaryotic Transcriptional Regulation , 2009, Microbiology and Molecular Biology Reviews.

[35]  J. Withey,et al.  Bicarbonate Induces Vibrio cholerae Virulence Gene Expression by Enhancing ToxT Activity , 2009, Infection and Immunity.

[36]  G. O’Toole,et al.  The developmental model of microbial biofilms: ten years of a paradigm up for review. , 2009, Trends in microbiology.

[37]  G. Price,et al.  Bicarbonate‐mediated transcriptional activation of divergent operons by the virulence regulatory protein, RegA, from Citrobacter rodentium , 2008, Molecular microbiology.

[38]  S. Beatson,et al.  EhaA is a novel autotransporter protein of enterohemorrhagic Escherichia coli O157:H7 that contributes to adhesion and biofilm formation. , 2008, Environmental microbiology.

[39]  B. Berger,et al.  Identification of Genes Associated with the Long-Gut-Persistence Phenotype of the Probiotic Lactobacillus johnsonii Strain NCC533 Using a Combination of Genomics and Transcriptome Analysis , 2008, Journal of Bacteriology.

[40]  M. Inui,et al.  Regulation of expression of general components of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) by the global regulator SugR in Corynebacterium glutamicum , 2008, Applied Microbiology and Biotechnology.

[41]  J. Stülke,et al.  Trigger enzymes: bifunctional proteins active in metabolism and in controlling gene expression , 2007, Molecular microbiology.

[42]  P. Watnick,et al.  A Novel Role for Enzyme I of the Vibrio cholerae Phosphoenolpyruvate Phosphotransferase System in Regulation of Growth in a Biofilm , 2007, Journal of bacteriology.

[43]  M. Joshi,et al.  The AraC/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in Streptomyces scabies , 2007, Molecular microbiology.

[44]  Dmitry A Rodionov,et al.  Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. , 2007, Chemical reviews.

[45]  C. Francke,et al.  How Phosphotransferase System-Related Protein Phosphorylation Regulates Carbohydrate Metabolism in Bacteria , 2006, Microbiology and Molecular Biology Reviews.

[46]  Y. Seok,et al.  In Vitro Reconstitution of Catabolite Repression in Escherichia coli* , 2006, Journal of Biological Chemistry.

[47]  P. Watnick,et al.  Vibrio cholerae Infection of Drosophila melanogaster Mimics the Human Disease Cholera , 2005, PLoS pathogens.

[48]  F. González-Candelas,et al.  Horizontal gene transfer in the molecular evolution of mannose PTS transporters. , 2005, Molecular biology and evolution.

[49]  P. Watnick,et al.  Genetic evidence that the Vibrio cholerae monolayer is a distinct stage in biofilm development , 2004, Molecular microbiology.

[50]  Jun Zhu,et al.  Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. , 2003, Developmental cell.

[51]  D. Gutman,et al.  Urea-dependent Signal Transduction by the Virulence Regulator UreR* , 2002, The Journal of Biological Chemistry.

[52]  J. Plumbridge Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently). , 2001, Journal of molecular microbiology and biotechnology.

[53]  J. Rosner,et al.  The AraC transcriptional activators. , 2001, Current opinion in microbiology.

[54]  R. Gourse,et al.  Fine structure of E. coli RNA polymerase-promoter interactions: alpha subunit binding to the UP element minor groove. , 2001, Genes & development.

[55]  K. Klose,et al.  Environmental Signals Modulate ToxT-Dependent Virulence Factor Expression in Vibrio cholerae , 1999, Journal of bacteriology.

[56]  H. Freeze,et al.  Direct utilization of mannose for mammalian glycoprotein biosynthesis. , 1998, Glycobiology.

[57]  J. Plumbridge Control of the expression of the manXYZ operon in Escherichia coli: Mlc is a negative regulator of the mannose PTS , 1998, Molecular microbiology.

[58]  A Bairoch,et al.  Arac/XylS family of transcriptional regulators , 1997, Microbiology and molecular biology reviews : MMBR.

[59]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[60]  P. Genevaux,et al.  A rapid screening procedure to identify mini-Tn10 insertion mutants of Escherichia coli K-12 with altered adhesion properties. , 1996, FEMS microbiology letters.

[61]  J. Mekalanos,et al.  Regulatory cascade controls virulence in Vibrio cholerae. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[62]  P. Postma,et al.  Phosphoenolpyruvate:sugar phosphotransferase system-mediated regulation of carbohydrate metabolism in Salmonella typhimurium , 1982, Journal of bacteriology.

[63]  M. Saier,et al.  Fine control of adenylate cyclase by the phosphoenolpyruvate:sugar phosphotransferase systems in Escherichia coli and Salmonella typhimurium , 1980, Journal of bacteriology.

[64]  Raquel Tobes,et al.  AraC-XylS database: a family of positive transcriptional regulators in bacteria , 2002, Nucleic Acids Res..

[65]  H. Hamashima,et al.  A simple and rapid method for transformation of Vibrio species by electroporation. , 1995, Methods in molecular biology.

[66]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .